Примеры расчета свободной энергии.

Химический потенциал.

Если в систему будет добавляться или из неё будет отводиться какое-либо вещество, а также в случае постоянства числа частиц, но изменения их химической природы, то очевидно, что даже при постоянных параметрах Р, V, Т термодинамические потенциалы системы будут изменяться. Системы, в которых не только осуществляется обмен энергией с окружением, но и может меняться число частиц, называются открытыми . Равновесие таких систем наиболее компактно описывается с использованием химического потенциала. Это понятие в 1875 году ввёл Гиббс.

Гиббс Джозайя Вилард (1839 – 1908 г). Американский физик –теоретик. Образование получил в Иельском университете. С 1871г. профессор математической физики того же университета, где работал до конца жизни.

Добавим в систему малое количество вещества «i». Система содержит разные вещества и настолько велика, что эта добавка не изменяет ни объём, ни температуру, ни концентрации. Тогда прирост внутренней энергии системы будет равен

– изменение внутренней энергии при введении одного моля

вещества «i» при постоянстве всех остальных компонент «j», а dni – количество молей добавленного вещества. Таким образом, для систем, масса которых может меняться, общее выражение для изменения внутренней энергии при совершении только работы расширения имеет вид

dU = TdS – PdV +

где суммирование проводится по всем видам добавляемых веществ. Из () видно также, что

представляет собой изменение внутренней энергии за счёт изменения количества вещества при S и V = const. Используя выражение (), можно получить аналогичные формулы для изменений Н, F и G :

dH = TdS + VdP +

dF = - SdT – PdV +

dG = - SdT + VdP +

В () и () третьи члены в правых частях равны друг другу. Покажем это на примере (2.21) и выражения для dH в (2.22). Прибавим и вычтем V dP в ()

dU = TdS – PdV + VdP – VdP +

dH = TdS + VdP +

Сравнивая полученное выражение с первой формулой в (), можно сделать заключение о равенстве сумм. Аналогичным путём можно показать, что

Если предположить, что изменение всех компонент «j» равны нулю, кроме вещества «i», то тогда справедливы равенства

Из этих равенств следует, что

где n j – условие постоянства концентраций всех веществ «j» кроме вещества «I». Величина μ i получила названия химического потенциала .

Теперь фундаментальные уравнения термодинамики для обратимых и необратимых процессов в открытых системах можно записать в следующем виде:

dU = TdS – PdV +

dH = TdS + VdP +

dF = SdT – PdV

dG = SdT + VdP

Все определения химического потенциала (2.23) эквивалентны. Однако в химической термодинамике обычно используют определение

поскольку процессы, связанные с изменением состава изучаются чаще всего при Р и Т = const и эти параметры являются стандартными для характеристической функции G . При бесконечно малом изменении состава системы в случае Р и Т = const из последнего выражения в () имеем

dG T , P = μ 1 dn 1 + μ 2 dn 2 + + μ i dn i .

Если состав системы не меняется, то μ i = const и интегральная форма уравнения () принимает вид

G T , P = μ 1 n 1 + μ 2 n 2 + + μ i n i .

Константа интегрирования в () равна нулю, так как при n 1 , n 2 , n 3 , n i = 0 величина G Т,Р = 0 . Из уравнения () следует, что величина μ i n i характеризует вклад, который вносит каждое из веществ в суммарный термодинамический потенциал системы. Следует отметить, что в общем случае μ i G i,m , где G i,m – термодинамический потенциал одного моля чистого компонента. Равенство μ i = G i,m может выполняться только в некоторых частных случаях (разные фазы одного вещества, смеси идеальных газов). В общем случае значение химического потенциала μ i зависит от состава системы, что связано с существованием взаимодействия между молекулами веществ, образующих систему. Химический потенциал характеризует систему независимо от того, идут в ней химические превращения или нет.

Реальный газ. Фактор сжимаемости природных газов. Вириальное уравнение состояния, уравнение Майера - Боголюбова. Уравнение Ван – дер - Ваальса.

Для реальных газов уравнение состояния в общем виде записывается так

где – мольный объём газа; , , … - второй, третий и т.д. вириальные коэффициенты. Само уравнение называется вириальным уравнением состояния (Каммерлинг – Онесс).

Вычислив , , …, получим уравнение состояния для конкретного газа.

Лучше было бы получить уравнение состояния, которое описывало поведение всех реальных газов, несмотря на потери в точности.

Впервые эту задачу решил голландский физик Ван-дер-Ваальс в своей диссертации "Непрерывность газообразного и жидкого состояния" (1873 г.). Такое уравнение состояния должно учитывать взаимодействие молекул, т.е. силы притяжения и отталкивания между молекулами.

Простые и не очень строгие рассуждения привели к уравнению вида

Уравнение называется уравнением состояния Ван-дер-Ваальса. Вывод сделан на основе качественных рассуждений о молекулярном объёме "b " и межмолекулярных силах притяжения, величина которых пропорциональна квадрату плотности газа. Но в этом и сила этого подхода. Не надо точно знать, что происходит между молекулами. К величинам "а" и "b " можно относиться как к подгоночным параметрам. А сходство реальных изотерм в Р, V – диаграмме с изотермами Ван-дер-Ваальса говорит о силе этого уравнения (см. рис.).

Кривая насыщения и изотермы Ван-дер-Ваальса в Р-V диаграмме.

Когда молекула газа летит к стенке, а затем отражается от неё, то меняется её импульс. Ежесекундное изменение импульса всех молекул, падающих на единицу площади стенки и отражающихся от неё равно . Однако, в отличие от идеальных газов, импульс налетающих молекул изменяется не только под действием сил давления со стороны стенки, но и под действием сил, с которыми их тянут внутрь газа молекулы пристеночного слоя. В частности, под действием этих последних сил молекула может отразиться внутри пристеночного слоя, не долетев до стенки.

Давление на стенку не зависит от материала стенки. Роль стенки может выполнять сам газ. Проведём мысленно произвольное сечение, разделяющее газ на две части. Давление одной части на другую будет таким же, как если бы эта другая часть была твёрдой стенкой. Оно равно , а не или какой-либо другой комбинации этих величин. Именно это давление входит в уравнение гидродинамики и газодинамики.

Сила называется внутренним или молекулярным давлением. Её можно представить в виде , где - сила, действующая на молекулу пристеночного слоя, а - число молекул в нём, отнесённое к единице площади. Можно также написать . Обе величины и пропорциональны плотности или обратно пропорциональны объёму газа. Предполагая, что газ взят в количестве одного моля, можно положить

где - постоянная, характерная для рассматриваемого газа. Тогда (*) переходит в

Учтём совместное действие сил притяжения и сил отталкивания. Для неплотных газов поправки на силы притяжения и отталкивания можно вводить независимо. Так как объём, доступный движущимся молекулам, будет равен , то:

После раскрытия скобок уравнение изотермы примет вид.

Это уравнение третьей степени по , в которое давление входит в качестве параметра. Поскольку его коэффициенты вещественны, уравнение имеет либо один вещественный корень, либо три корня. Каждому корню на плоскости () соответствует точка, в которой изобара пересекает изотерму. В первом случае, когда корень один, и точка пересечения будет одна. Так будет при любых давлениях, если температура достаточно высока. Изотерма имеет вид монотонно опускающейся кривой. При более низких температурах и надлежащих значениях давления уравнение имеет три корня , и . В таких случаях изобара пересекает изотерму в трёх точках. Изотерма содержит волнообразный участок. При некоторой промежуточной температуре три корня , , становятся равными. Такая температура и соответствующая ей изотерма называются критическими . Критическая изотерма всюду монотонно опускается вниз, за исключением одной точки , являющейся точкой перегиба изотермы. В ней касательная к изотерме горизонтальна. Точка называется критической точкой . Соответствую ей давление , объём и температура называются также критическими, а вещество находится в критическом состоянии .

В критической точке

Решая эти уравнения, можно выразить критические параметры через постоянные Ван-дер-Ваальса "а " и "b" :

Из уравнений (**) следует, что фактор (коэффициент) сжимаемости

в критической точке согласно уравнению Ван-дер-Ваальса одинаков для всех веществ и равен

Величина фактора сжимаемости в критической точке некоторых реальных газов приведена в таблице. Как правило эти величины меньше 0,375 и отклонения возрастают для полярных молекул.

Это уравнение имеет ту же форму, но константы "а " и "b ", характеризующие тот или иной газ, в нём исчезли. Таким образом, уравнение (2.47) справедливо для всех реальных газов, подчиняющихся уравнению состояния Ван-дер-Ваальса. Теория соответственных состояний, как часть теории термодинамического подобия, построена на этом уравнении. Термодинамические свойства веществ в соответственных состояниях одинаковы. Это утверждение теории является мощным инструментом для предсказаний неизвестных

Пограничные кривые, критические параметры. Метастабильные и лабильные состояния. Фазовая диаграмма давление – температура чистых веществ, фазовые диаграммы плотность - температура, давление - удельный объем чистых жидкостей. Соответственные состояния, критический коэффициент сжимаемости.

Сейчас начнём обсуждать фазовое поведение флюидов в свободном (без пористой среды) объёме .

Фазовые превращения вещества – широко распространённое явление в природе. простейшими их примерами служат превращение перегретой жидкости в пар, кристаллизация жидкости, выпадение растворённого вещества из пересыщенного раствора. Приведенные примеры относятся к фазовым превращениям первого рода.

Фазой называется макроскопическая физически однородная часть вещества, отделённая от остальной части системы границами раздела, так что она может быть извлечена из системы механическим путём.

К концу XIX столетия физико-химикам казалось, что всё многообразие фазовых равновесий исчерпано в следующих типах равновесий: кристалл – кристалл, кристалл – жидкость, кристалл – газ, жидкость – жидкость и жидкость – газ. Теория этих фазовых равновесий была изложена в работах Коновалова, Столетова, Гиббса, Ван-дер-Ваальса, Куэнена и др. Существовало и убедительное подтверждение теоретических представлений.

Сейчас нам кажется странным, почему возможность существования ещё одного типа равновесий – равновесие между двумя газовыми фазами (наличие которого можно было предположить хотя бы по простой аналогии) вообще не обсуждалась до самого конца XIX столетия.

Термодинамические диаграммы, в которых по осям координат откладываются давление, температура, мольный объём и наносятся кривые фазового равновесия называются фазовыми диаграммами. Для многокомпонентных систем по осям координат может откладываться и состав.

Кривой фазового равновесия называется линия на фазовой диаграмме, соответствующая состояниям равновесия сосуществующих фаз.

Что такое равновесие?

Термодинамическим потенциалом называется характеристическая функция, убыль которой в обратимом процессе, идущем при постоянстве значений соответствующей пары параметров, равна максимальной полезной работе.

Характеристическая функция.

Характеристическая функция.

Свободная энергия Гиббса G.

Функции называют также термодинамическими потенциалами. Дадим определение термодинамического потенциала.

Термодинамические потенциалы стремятся к минимуму при движении системы к равновесию. Перепишем компактно выражения дифференциалов четырёх термодинамических потенциалов:

, (***)

Формулы (***) составляют основу для получения термодинамических соотношений, которые связывают термодинамические величины друг с другом и с экспериментально определяемыми параметрами. Такие соотношения можно получать различными способами. Например, имеется выражение для полного дифференциала вида

тогда справедливы следующие уравнения:

Используя () и () можно получить целый ряд полезных соотношений между термодинамическими величинами.

Энтропию обычно рассматривают как функцию переменных ; или . Записав выражение для полного дифференциала, находят соотношения между энтропией и экспериментально определяемыми параметрами системы.

Если в систему будет добавляться или из неё будет отводиться какое-либо вещество, а также в случае постоянства числа частиц, но изменения их химической природы, то очевидно, что даже при постоянных параметрах Р, V, Т термодинамические потенциалы системы будут изменяться. Системы, в которых не только осуществляется обмен энергией с окружением, но и может меняться число частиц, называются открытыми . Равновесие таких систем наиболее компактно описывается с использованием химического потенциала. Это понятие в 1875 году ввёл Гиббс.

Гиббс Джозайя Вилард (1839 – 1908 г). Американский физик –теоретик. Образование получил в Иельском университете. С 1871г. профессор математической физики того же университета, где работал до конца жизни.

Добавим в систему малое количество вещества «i». Система содержит разные вещества и настолько велика, что эта добавка не изменяет ни объём, ни температуру, ни концентрации. Тогда прирост внутренней энергии системы будет равен

– изменение внутренней энергии при введении одного моля

вещества «i» при постоянстве всех остальных компонент «j», а dni – количество молей добавленного вещества. Таким образом, для систем, масса которых может меняться, общее выражение для изменения внутренней энергии при совершении только работы расширения имеет вид

dU = TdS – PdV +



где суммирование проводится по всем видам добавляемых веществ. Из () видно также, что

представляет собой изменение внутренней энергии за счёт изменения количества вещества при S и V = const. Используя выражение (), можно получить аналогичные формулы для изменений Н, F и G :

dH = TdS + VdP +

dF = - SdT – PdV +

dG = - SdT + VdP +

В () и () третьи члены в правых частях равны друг другу. Покажем это на примере (2.21) и выражения для dH в (2.22). Прибавим и вычтем V dP в ()

dU = TdS – PdV + VdP – VdP +

dH = TdS + VdP +

Сравнивая полученное выражение с первой формулой в (), можно сделать заключение о равенстве сумм. Аналогичным путём можно показать, что

Если предположить, что изменение всех компонент «j» равны нулю, кроме вещества «i», то тогда справедливы равенства

Из этих равенств следует, что

где n j – условие постоянства концентраций всех веществ «j» кроме вещества «I». Величина μ i получила названия химического потенциала .

Теперь фундаментальные уравнения термодинамики для обратимых и необратимых процессов в открытых системах можно записать в следующем виде:

dU = TdS – PdV +

dH = TdS + VdP +

dF = SdT – PdV

dG = SdT + VdP

Все определения химического потенциала (2.23) эквивалентны. Однако в химической термодинамике обычно используют определение

поскольку процессы, связанные с изменением состава изучаются чаще всего при Р и Т = const и эти параметры являются стандартными для характеристической функции G . При бесконечно малом изменении состава системы в случае Р и Т = const из последнего выражения в () имеем

dG T , P = μ 1 dn 1 + μ 2 dn 2 + + μ i dn i .

Если состав системы не меняется, то μ i = const и интегральная форма уравнения () принимает вид

G T , P = μ 1 n 1 + μ 2 n 2 + + μ i n i .

Константа интегрирования в () равна нулю, так как при n 1 , n 2 , n 3 , n i = 0 величина G Т,Р = 0 . Из уравнения () следует, что величина μ i n i характеризует вклад, который вносит каждое из веществ в суммарный термодинамический потенциал системы. Следует отметить, что в общем случае μ i G i,m , где G i,m – термодинамический потенциал одного моля чистого компонента. Равенство μ i = G i,m может выполняться только в некоторых частных случаях (разные фазы одного вещества, смеси идеальных газов). В общем случае значение химического потенциала μ i зависит от состава системы, что связано с существованием взаимодействия между молекулами веществ, образующих систему. Химический потенциал характеризует систему независимо от того, идут в ней химические превращения или нет.

Реальный газ. Фактор сжимаемости природных газов. Вириальное уравнение состояния, уравнение Майера - Боголюбова. Уравнение Ван – дер - Ваальса.

Для реальных газов уравнение состояния в общем виде записывается так

где – мольный объём газа; , , … - второй, третий и т.д. вириальные коэффициенты. Само уравнение называется вириальным уравнением состояния (Каммерлинг – Онесс).

Вычислив , , …, получим уравнение состояния для конкретного газа.

Лучше было бы получить уравнение состояния, которое описывало поведение всех реальных газов, несмотря на потери в точности.

Впервые эту задачу решил голландский физик Ван-дер-Ваальс в своей диссертации "Непрерывность газообразного и жидкого состояния" (1873 г.). Такое уравнение состояния должно учитывать взаимодействие молекул, т.е. силы притяжения и отталкивания между молекулами.

Простые и не очень строгие рассуждения привели к уравнению вида

Уравнение называется уравнением состояния Ван-дер-Ваальса. Вывод сделан на основе качественных рассуждений о молекулярном объёме "b " и межмолекулярных силах притяжения, величина которых пропорциональна квадрату плотности газа. Но в этом и сила этого подхода. Не надо точно знать, что происходит между молекулами. К величинам "а" и "b " можно относиться как к подгоночным параметрам. А сходство реальных изотерм в Р, V – диаграмме с изотермами Ван-дер-Ваальса говорит о силе этого уравнения (см. рис.).

Кривая насыщения и изотермы Ван-дер-Ваальса в Р-V диаграмме.

Когда молекула газа летит к стенке, а затем отражается от неё, то меняется её импульс. Ежесекундное изменение импульса всех молекул, падающих на единицу площади стенки и отражающихся от неё равно . Однако, в отличие от идеальных газов, импульс налетающих молекул изменяется не только под действием сил давления со стороны стенки, но и под действием сил, с которыми их тянут внутрь газа молекулы пристеночного слоя. В частности, под действием этих последних сил молекула может отразиться внутри пристеночного слоя, не долетев до стенки.

Давление на стенку не зависит от материала стенки. Роль стенки может выполнять сам газ. Проведём мысленно произвольное сечение, разделяющее газ на две части. Давление одной части на другую будет таким же, как если бы эта другая часть была твёрдой стенкой. Оно равно , а не или какой-либо другой комбинации этих величин. Именно это давление входит в уравнение гидродинамики и газодинамики.

Сила называется внутренним или молекулярным давлением. Её можно представить в виде , где - сила, действующая на молекулу пристеночного слоя, а - число молекул в нём, отнесённое к единице площади. Можно также написать . Обе величины и пропорциональны плотности или обратно пропорциональны объёму газа. Предполагая, что газ взят в количестве одного моля, можно положить

где - постоянная, характерная для рассматриваемого газа. Тогда (*) переходит в

Учтём совместное действие сил притяжения и сил отталкивания. Для неплотных газов поправки на силы притяжения и отталкивания можно вводить независимо. Так как объём, доступный движущимся молекулам, будет равен , то:

После раскрытия скобок уравнение изотермы примет вид.

Это уравнение третьей степени по , в которое давление входит в качестве параметра. Поскольку его коэффициенты вещественны, уравнение имеет либо один вещественный корень, либо три корня. Каждому корню на плоскости () соответствует точка, в которой изобара пересекает изотерму. В первом случае, когда корень один, и точка пересечения будет одна. Так будет при любых давлениях, если температура достаточно высока. Изотерма имеет вид монотонно опускающейся кривой. При более низких температурах и надлежащих значениях давления уравнение имеет три корня , и . В таких случаях изобара пересекает изотерму в трёх точках. Изотерма содержит волнообразный участок. При некоторой промежуточной температуре три корня , , становятся равными. Такая температура и соответствующая ей изотерма называются критическими . Критическая изотерма всюду монотонно опускается вниз, за исключением одной точки , являющейся точкой перегиба изотермы. В ней касательная к изотерме горизонтальна. Точка называется критической точкой . Соответствую ей давление , объём и температура называются также критическими, а вещество находится в критическом состоянии .

В критической точке

Решая эти уравнения, можно выразить критические параметры через постоянные Ван-дер-Ваальса "а " и "b" :

Из уравнений (**) следует, что фактор (коэффициент) сжимаемости

в критической точке согласно уравнению Ван-дер-Ваальса одинаков для всех веществ и равен

Величина фактора сжимаемости в критической точке некоторых реальных газов приведена в таблице. Как правило эти величины меньше 0,375 и отклонения возрастают для полярных молекул.

Таблица. Значения критического фактора сжимаемости ZK реальных газов.

Ван-дер-Ваальс предложил также ввести приведённые переменные газа:

– приведённое давление;

– приведённая температура;

– приведённый объём.

Была надежда на то, что при одинаковых приведённых температурах и объёмах различные реальные газы будут оказывать одинаковое приведённое давление. Обратимся к уравнению (*). Если в него вместо подставить , вместо – τ⋅ТК , вместо , и выразить значения критических параметров из уравнений (**) то получим

Это уравнение имеет ту же форму, но константы "а " и "b ", характеризующие тот или иной газ, в нём исчезли. Таким образом, уравнение (2.47) справедливо для всех реальных газов, подчиняющихся уравнению состояния Ван-дер-Ваальса. Теория соответственных состояний, как часть теории термодинамического подобия, построена на этом уравнении. Термодинамические свойства веществ в соответственных состояниях одинаковы. Это утверждение теории является мощным инструментом для предсказаний неизвестных

Пограничные кривые, критические параметры. Метастабильные и лабильные состояния. Фазовая диаграмма давление – температура чистых веществ, фазовые диаграммы плотность - температура, давление - удельный объем чистых жидкостей. Соответственные состояния, критический коэффициент сжимаемости.

Сейчас начнём обсуждать фазовое поведение флюидов в свободном (без пористой среды) объёме .

Фазовые превращения вещества – широко распространённое явление в природе. простейшими их примерами служат превращение перегретой жидкости в пар, кристаллизация жидкости, выпадение растворённого вещества из пересыщенного раствора. Приведенные примеры относятся к фазовым превращениям первого рода.

Фазой называется макроскопическая физически однородная часть вещества, отделённая от остальной части системы границами раздела, так что она может быть извлечена из системы механическим путём.

К концу XIX столетия физико-химикам казалось, что всё многообразие фазовых равновесий исчерпано в следующих типах равновесий: кристалл – кристалл, кристалл – жидкость, кристалл – газ, жидкость – жидкость и жидкость – газ. Теория этих фазовых равновесий была изложена в работах Коновалова, Столетова, Гиббса, Ван-дер-Ваальса, Куэнена и др. Существовало и убедительное подтверждение теоретических представлений.

Сейчас нам кажется странным, почему возможность существования ещё одного типа равновесий – равновесие между двумя газовыми фазами (наличие которого можно было предположить хотя бы по простой аналогии) вообще не обсуждалась до самого конца XIX столетия.

Термодинамические диаграммы, в которых по осям координат откладываются давление, температура, мольный объём и наносятся кривые фазового равновесия называются фазовыми диаграммами. Для многокомпонентных систем по осям координат может откладываться и состав.

Кривой фазового равновесия называется линия на фазовой диаграмме, соответствующая состояниям равновесия сосуществующих фаз.

Что такое равновесие?

Всякое физическое тело (система), поставленное в определённые внешние условия, рано или поздно приходит в состояние термодинамического (статистического) равновесия.

Это утверждение можно рассматривать как один из основных постулатов термодинамики и статистической физики .

Внешние условия характеризуются своими параметрами.

Наше тело (система) – внутренними параметрами. Эти параметры характеризуют свойства самой системы.

Внутренние параметры зависят от внешних параметров.

В состоянии термодинамического равновесия системы они имеют при заданных внешних параметрах и температуре (энергии) определённые численные значения.

Одна и та же величина, в зависимости от условий, в которых находится система, может играть роль как внешнего, так и внутреннего параметра.

Например. Если фиксировано положение стенок сосуда, объём является внешним параметром, а давление – внутренним. Если, однако, ограничить систему в сосуде подвижным поршнем под постоянной нагрузкой, то давление будет внешним параметром, а объём – внутренним параметром.

Итак, интуитивно считается очевидным, что если изолированную систему оставить в покое, то она в конце концов придёт в равновесие. Но каким образом это будет происходить – большой вопрос.

Если система поставлена в определённые внешние условия (то есть, заданы её внешние параметры), но она находится в неравновесном состоянии (то есть, её внутренние параметры не имеют равновесных значений), то система изменяется во времени, приближаясь к своему равновесному состоянию.

Процесс перехода термодинамической системы из неравновесного состояния в равновесное называется процессом релаксации . При этом для выравнивания значения каждого параметра по всему объёму системы существует свое характерное время релаксации – время релаксации для данного параметра. Роль полного времени релаксации играет, очевидно, максимальное из этих времён. Более подробно об этом мы поговорим когда будем изучать принципы неравновесной термодинамики.

А сейчас начнём обсуждать проблемы равновесной термодинамики.

Термодинамика представляет собой классический пример аксиоматически построенной науки. В основе её лежат несколько фундаментальных законов, которые являются обобщением нашего опыта и рассматриваются как аксиомы. В этом смысле термодинамика аналогична евклидовой геометрии.

Чтобы подчеркнуть аксиоматический характер основных законов термодинамики и их общность, о них говорят как о началах термодинамики. Обычно выделяют четыре начала термодинамики.

Четыре начала термодинамики в формулировке известного немецкого физика А.Зоммерфельда.

Нулевое начало (температура как функция состояния) .

Существует функция состояния – температура. Равенство температур во всех точках есть условие равновесия двух систем или дух частей одной и той же системы.

Термодинамика занимается изучением свойств физических систем в состоянии равновесия. Любой вывод, приводящий к введению температуры, относится к термодинамическому равновесию. Поэтому температура определена только для состояний равновесия.

Температура выступает как мера средней энергии теплового движения молекул. Она связана со средней кинетической энергией частиц системы следующим выражением:

Постоянная Больцмана.

Из этого соотношения следует, что температура является функцией мгновенного распределения скоростей молекул, то есть функцией состояния системы. Она не зависит от предыстории системы и полностью определяется состоянием системы в данный момент времени.

Температура не единственная функция состояния. Любая физическая величина, имеющая определённое значение для каждого равновесного состояния системы, является функцией состояния и называется термодинамической величиной. К ним относятся, например, температура давление, внутренняя энергия и т.д.

Термодинамические величины или функции состояния – это тот язык, на котором разговаривает термодинамика.

Напомню, что основными понятиями классической механики являются координаты и импульсы составляющих её частиц.

Квантовая механика описывает процессы на языке волновых функций.

Работа и теплота в термодинамике не являются функциями состояния, а и не есть полный дифференциал какой-либо функции состояния.

Первое начало термодинамики (закон сохранения энергии) .

Каждая термодинамическая система обладает характеристической функцией состояния – энергией. Эта функция состояния возрастает на величину сообщённого системе тепла и уменьшается на величину совершённой системой внешней работы. Для изолированных систем справедлив закон сохранения энергии (справедлив независимо от того, находится ли система в равновесии или нет).

Первое начало термодинамики:

определяет новую функцию состояния – внутреннюю энергию U («эн» – ёмкость, «эрг» - «работа»). Под внутренней энергией подразумевается энергия системы, зависящая от её внутреннего состояния (энергия теплового движения всех микрочастиц системы и энергия их взаимодействия).

Кинетическая энергия движения системы как целого и её потенциальная энергия во внешних силовых полях во внутреннюю энергию не входят.

Тепло, полученное системой, идёт на приращение её внутренней энергии и на производство внешней работы .

Химический потенциал

Рассмотрим системы, в которых изменяются количества веществ. Эти изменения могут происходить в результате химических реакций или фазовых переходов. При этом изменяются значения термодинамических потенциалов U, Н, F, G системы.

Для характеристики способности веществ к химическим превращениям (или фазовым переходам) используется химический потенциал р. Водится он как частная производная термодинамических потенциалов по числу молей. В зависимости от условий осуществления процесса химический потенциал і-го компонента выражается через соответствующий термодинамический потенциал Gj, F t , Я, или Uj. Так, при постоянных температуре, давлении и количестве молей всех компонентов, кроме і-го, химический потенциал /-го компонента равен частной производной энергии Гиббса по числу молей г-го компонента:

Аналогичным же образом вводятся химические потенциалы при других условиях:

Изменение термодинамического потенциала (например, G) при изменении количества только /-го компонента равно

Обычно в системе при химических реакциях изменяется концентрация нескольких компонентов или идет изменение количества компонентов в нескольких фазах. Поэтому общее изменение термодинамического потенциала в системе dG равно

Для самопроизвольного процесса

Если в системе, в которой происходит химическая реакция

имеется только два компонента А и В, то для самопроизвольного процесса можно записать

Так как в данном случаето

В этом случае химический потенциал исходного вещества А больше, чем химический потенциал продукта В.

При равновесии должно соблюдаться соотношение

Рассмотренные в данном параграфе термодинамические потенциалы будут далее использованы для изучения физико-химических процессов в других разделах физической химии - фазовые и химические равновесия, химическая кинетика, коллоидные системы и др.

Примеры расчета свободной энергии

На примере двух конкретных процессов рассмотрим, как рассчитывается свободная энергия (энергия Гиббса) и на основании полученных результатов сделаем выводы о возможности и условиях протекания процессов.

Пример 4.1. Возможен ли при обычных (стандартных) условиях процесс восстановления оксида железа (III) водородом? Процесс протекает в соответствии с уравнением

Решение. Для ответа на вопрос задачи необходимо знать изменение изобарноизотермического потенциала при стандартных условиях для вышеприведенной реакции, т.е.

Для этого, как видно, нужно знать стандартное изменение энтальпии и энтропии в процессе. Из термодинамического справочника выписываем энтальпии образования и энтропии всех веществ, входящих в уравнение реакции, и сводим данные в табл. 4.3.

Рассчитаем изменение энтальпии и энтропии реакции при стандартных условиях в соответствии с законом Гесса.

Таблица 4.3

Термодинамические характеристики исходных веществ и продуктов реакции

Таким образом, изменение энтальпии в реакции при стандартных условиях составляет величину ΔНр еакции = 95,74 кДж/моль.

Изменение энтропии ΔSр еакц|1и также рассчитаем в соответствии с законом Гесса:

Изменение энтропии в реакции при стандартных условиях оказалось равным

При температуре 298 К изменение энергии Гиббса составит величину

Большая положительная величина ΔGр еакции = +54,48 кДж/ моль указывает на невозможность восстановления Fe 2 0 3 (кр) водородом до металлического железа при стандартных условиях.

Наоборот, противоположный процесс

характеризуется отрицательной величиной изменения энергии Гиббса

Из чего следует, что такая реакция возможна. Действительно, этот процесс самопроизвольно протекает, и результатом его является окисление (коррозия) железа, что мы и наблюдаем повседневно. А при каких условиях (при какой температуре) будет наблюдаться равновесие в данной системе? В равновесном состоянии изменение энергии Гиббса системы равно нулю, т.е.

При этой температуре обе реакции - восстановление и окисление железа - равновероятны, их скорости одинаковы. При расчете температуры равновесия предполагаем, что изменение энтальпии и энтропии не зависит от температуры, и используем их стандартные значения для 298 К. При температуре ниже 691 К железо самопроизвольно окисляется водяными парами до оксида железа с выделением водорода, а при температуре выше 691 К. наоборот, водород восстанавливает оксид железа до металлического.

Таким образом, используя основные понятия и термодинамические закономерности, мы оценили принципиальную возможность протекания как прямой, так и обратной реакции, а также и температуру равновесного состояния реакционной системы.

Пример 4.2. Возможен ли процесс испарения воды при стандартных условиях? Каково влияние температуры на этот процесс?

Решение. Для решения вопроса о возможности данного процесса нужно знать изменение энергии Гиббса при его протекании. Поэтому вначале составим термохимическое уравнение требуемого перехода:

Для расчета изменения энергии Гиббса этого перехода, равного

ΔS исп этого процесса.

Рассчитаем изменение энтальпии этого перехода при стандартных условиях:

и изменение энтропии в этом процессе при этих же условиях:

Подставляя табличные данные (см. приложение), получаем:

Зная эти величины, рассчитываем изменение энергии Гиббса при этом переходе для стандартных условий:

Полученная величина энергии Гиббса ΔG° mn = +8,6 кДж явно величина положительная (ΔG исп > 0), и, следовательно, процесс испарения воды при 25°С невозможен. Но наш повседневный опыт говорит об обратном: вода испаряется при комнатных условиях. В чем же дело?

Расчет нами проведен для стандартных условий, когда водяные пары имеют парциальное давление 101 325 На при температуре 25°С. В реальных же условиях парциальное давление водяных паров много меньше (всего 3647 Па) при этой температуре, что отвечает равновесному состоянию системы: "вода жидкая - пар". Если бы в реальных условиях парциальное давление водяных паров оказалось бы равным 101 325 Па, то, естественно, никакого самопроизвольного испарения жидкой воды в этих условиях не происходило бы (поэтому ΔG ncn > 0), а вот обратный процесс - конденсации водяного пара - наблюдался бы. Приведенный пример показывает, что нужно аккуратно обращаться с понятием "стандартные условия" и результатами термодинамических расчетов.

Рассчитаем, при какой температуре наступит равновесие между скоростью испарения и конденсации водяных паров, если их парциальное давление будет 101 325 Па. В состоянии равновесия изменение энергии Гиббса равно нулю

Значит, температура равновесного состояния Г |Х1НМ определяется выражением:

Значение 97,4°С близко температуре кипения воды, равной 100°С. Различие в 2.6°С обусловлено тем, что мы воспользовались стандартными значениями энтальпии и энтропии для 25°С и не учитывали их зависимость от температуры.

Превышение температуры системы над ее равновесным значением приведет к преобладанию скорости испарения воды по сравнению со скоростью конденсации, и тогда изменение энергии Гиббса окажется отрицательной величиной. А при понижении температуры системы относительно ее равновесного значения возобладает скорость конденсации водяных паров, и поэтому Δ G НСП будет положительной величиной.

Свободная энергия системы (энергия Гиббса G и энергия Гельмгольца F ) зависит от внешних условий:

Эта зависимость является полной для простейших систем, состоящих из одного компонента.

Термодинамическая система может состоять как из одного, так и из нескольких компонентов. Очевидно, что величина свободной энергии многокомпонентной системы будет зависеть как от внешних условий (Т , р , или V ), так и от природы и количества веществ, составляющих систему, т. е. свободная энергия, как и любая термодинамическая функция, является экстенсивным свойством системы. В случае, если состав системы изменяется во времени (т.е. в системе протекает химическая реакция), необходимо учесть влияние изменения состава на величину свободной энергии системы.

Рассмотрим термодинамическую систему, состоящую из k компонентов. Пусть n 1 , n 2 , …, n k – число моль 1-го, 2-го, …, k -го компонентов. Тогда свободная энергия Гиббса является функцией следующих переменных:

G = f (p , T , n 1 , n 2 , …, n k )

Продифференцируем по всем переменным:

Введем обозначение:

………………….

где μ 1 , μ 2 , …, μ k – химические потенциалы 1-го, 2-го, …, k -го компонентов соответственно.

В общем виде

Аналогичное выражение получаем для свободной энергии Гельмгольца:

F = f (V , T , n 1 , n 2 , …, n k )

Таким образом, химический потенциал – это частная производная от свободной энергии по количеству моль i -го компонента при постоянстве соответствующих внешних параметрах и числе моль всех остальных компонентов. Таким образом, химический потенциал является парциальной мольной энергией Гиббса (при р , Т = const ):

Свободная энергия – это общее свойство системы, химический потенциал характеризует свойства отдельного компонента, входящего в систему. Химический потенциал является интенсивным свойством системы, т.к. не зависит от массы системы.

При р, Т = const уравнение (2.1) имеет вид:

В этом случае изменение энергии Гиббса, то есть полезная работа системы, обусловлена только изменением состава системы в результате протекания химической реакции или вследствие обмена веществом между системой и окружающей средой.

Уравнение (2.2) выражает взаимосвязь между общим свойством системы и свойствами каждого ее компонента. Приняв, что химический потенциал является постоянной величиной, проинтегрируем уравнение (2.2):

Константа интегрирования равна нулю, поскольку, если все n i = 0, энергия Гиббса также равна нулю.

Для индивидуального вещества

т.е. химический потенциал индивидуального вещества равен мольной энергии Гиббса.

При равновесии dG = 0 и уравнение (2.1) принимает вид:

Полученное уравнение является общим условием равновесия в системе с переменным составом при р , Т = const .

Химический потенциал индивидуального идеального газа.

Рассмотрим термодинамическую систему, представляющую собой идеальный газ. Химический потенциал идеального газа равен:

где – мольная энергия Гиббса (изобарный потенциал 1 моль идеального газа).

где – мольный объем идеального газа (объем 1 моль газа).

Если процесс протекает при Т = const , частную производную можно заменить полной. Тогда

Уравнение состояния 1 моль идеального газа:

Проинтегрируем в интервале от р 0 до р :

где μ 0 , р 0 – химический потенциал и давление идеального газа в стандартном состоянии.

За стандартное состояние принято состояние идеального газа при р 0 = 1 атм.

Стандартный химический потенциал – это химический потенциал при давлении газа 1 атм. Химический потенциал в стандартном состоянии μ 0 зависит только от температуры и не зависит от давления, т.е. μ 0 = f (T ). Из уравнения (2.3) видно, что под знаком логарифма стоит безразмерная величина, равная отношению давления р к стандартному давлению р 0 = 1 атм.

Поскольку μ = , можно записать

где – стандартная мольная энергия Гиббса.

Химический потенциал компонента идеальных растворов.

Если общее давление газовой смеси невелико, то каждый газ будет оказывать свое собственное давление, причем такое, как если бы он один занимал весь объем. Это давление называется парциальным. Полное наблюдаемое давление р равно сумме парциальных давлений каждого газа (закон Дальтона):

Химический потенциал компонента смеси идеальных газов равен:

где р i – парциальное давление газа.

Выражая парциальное давление газа р i через общее давление и мольную долю газа x i , получают выражение для зависимости химического потенциала i -го компонента от мольной доли:

где – химический потенциал идеального газа приx i = 1 (т.е. в индивидуальном состоянии) при давлении р и температуре Т ; зависит и от температуры, и от давления.

Для идеальных жидких растворов применимо уравнение

где – стандартный химический потенциал индивидуального компонента в жидком состоянии () зависит от температуры и давления;x i – мольная доля компонента.

Химический потенциал компонента реальных растворов .

Для реальных растворов все рассмотренные зависимости неприменимы. Химический потенциал компонента реального газового раствора рассчитывается по методу Льюиса. При этом для сохранения формы термодинамических уравнений вместо парциального давления в них вводят фиктивную величину f i , которая называется парциальной фугитивностью, или летучестью . Тогда

где – химический потенциал компонента реальной газовой смеси в стандартном состоянии.

Отношение летучести к парциальному давлению реального газового раствора называется коэффициентом летучести:

Аналогично, для жидких реальных растворов действительную концентрацию заменяют соответствующей фиктивной величиной – активностью а i :

где – химический потенциал компонента реального жидкого раствора в стандартном состоянии.

Активность связана с концентрацией через коэффициент активности:

где γ i – коэффициент активности.

В зависимости от способа выражения концентрации раствора различают рациональный, молярный и моляльный коэффициенты активности:

Коэффициент активности зависит от концентрации раствора. В бесконечно разбавленных растворах γ → 1, а i и f i c i и p i соответственно.

Перепишем уравнение для химического потенциала в виде

следовательно, термодинамическая активность – это работа переноса 1 моль i -го компонента из стандартного раствора в данный реальный раствор.

Существует два основных способа выбора стандартного состояния – симметричный и несимметричный.

Симметричный способ. Выбирается одинаковое стандартное состояние для растворителя и растворенного вещества – состояние чистого компонента при температуре раствора. Тогда в стандартном состоянии x i = 1, a i = 1 и γ i = 1. Данный способ чаще применяется для растворов неэлектролитов.

Несимметричный способ. Выбирается различное стандартное состояние для растворителя и растворенного вещества. Для растворителя – как и в симметричном способе: x i 1, a i 1 и γ i 1. Для растворенного вещества за стандартное состояние выбирается состояние вещества в бесконечно разбавленном растворе: x i 0, a i x i и γ i 1. Способ наиболее часто используется в термодинамике растворов электролитов.

ХИМИЧЕСКИЙ ПОТЕНЦИАЛ

ХИМИЧЕСКИЙ ПОТЕНЦИАЛ

Термодинамич. , определяющая изменение потенциалов термодинамических при изменении числа ч-ц в системе и необходимая для описания св-в открытых систем (с перем. числом ч-ц).

X. п. mi i-го компонента многокомпонентной системы равен частной производной от любого из термодинамич. потенциалов по количеству (числу ч-ц) этого компонента при пост. значениях остальных термодинамич. переменных, определяющих данный термодинамич. ; напр. mi=(дF/дNi)T, V, Ni (F - , Т - темп-ра, V - объём, j?i). Т. о., в системах с перем. числом ч-ц в выражение для дифференциала термодинамич. потенциала следует добавить величину SimidNi, напр. dF=-SdT-pdV+SimidNi, где р - , S - . Наиболее просто X. п. связан с термодинамич. потенциалом G (см. ГИББСА ЭНЕРГИЯ) G=SimiNi;. Для однокомпонентной системы X. п. m=G/N, т. е. представляет собой энергию Гиббса, отнесённую к одной ч-це. Вследствие аддитивности G X. п. зависит, кроме давления и темп-ры, только от концентраций отд. компонентов, но не от числа ч-ц в каждом компоненте. В простейшем случае идеальных газов m зависит только от концентрации i-ro компонента mi=m=i+kTln(Ni/N), где N=SiNi - полное число ч-ц, (m=i- X. п. чистого i-ro компонента. Часто величины mi удобно использовать в кач-ве независимых термодинамич. переменных вместо Ni. В переменных Т, V, mi состояние системы характеризует термодинамич. потенциал W=F-SimiNi.

X. п. явл. параметром в Гиббса большом каноническом распределении для систем с перем. числом ч-ц. В кач-ве нормировочной постоянной X. п. входит в распределения Больцмана, Бозе - Эйнштейна и Ферми - Дирака для ч-ц идеальных газов (см. СТАТИСТИЧЕСКАЯ ФИЗИКА). В системах, в к-рых применима статистика Больцмана или Бозе - Эйнштейна, X. п. всегда отрицателен. Для ферми-газа X. п. при нулевой темп-ре положителен и определяет граничную Ферми энергию (см. ФЕРМИ ПОВЕРХНОСТЬ) и вырождения температуру. Если полное число ч-ц в системе не фиксировано, а должно определяться из условия термодинамич. равновесия, как, напр., для фононов в тв. теле или для фотонов в случае равновесного теплового излучения, то равновесие характеризуется равенством нулю X. п.

Понятие X. п. позволяет сформулировать условия равновесия термодинамического. Одно из условий состоит в том, что X. п. любого компонента одинаков в различных фазах и в разных местах одной фазы. Это обусловлено возможностью перераспределения ч-ц, приводящего к выравниванию X. п. Для систем в пространственно неоднородном внешнем равновесие означает, что mi =m0i+Ui(r)=const, где m0i- X. п. в отсутствие поля, Ui(r) - потенц. ч-ц i-го компонента во внешнем поле. Для газа в поле тяжести это условие приводит к барометрической формуле для плотности газа. В случае заряж. ч-ц в электрич. поле (напр., в ПП) величину mi называют электрохим. потенциалом, оставляя название X. п. за m0i. Равенство значений X. п. для ч-ц одного компонента, находящихся в разных фазах, определяет условия равновесия при фазовых переходах (Гиббса правило фаз) и хим. реакциях (закон действующих масс), ионизац. равновесие (см. ИОНИЗАЦИЯ), св-ва растворов (законы Вант-Гоффа, Генри , Рауля) и т. д. Если для ч-ц одного из компонентов переход из одной части системы в другую невозможен, то для этого компонента условия постоянства X. п. нарушаются и в системе возникает . X. п. был введён амер. физиком Дж. У. Гиббсом (1875) при рассмотрении хим. равновесия в многокомпонентных системах, отсюда его название. Численно X. п. выражается в ед. энергии на ед. массы (Дж/кг), на ед. кол-ва в-ва (Дж/моль) или на 1 ч-цу.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ХИМИЧЕСКИЙ ПОТЕНЦИАЛ

Термодинамич. функция состояния, определяющая изменение потенциалов термодинамических при изменении числа частиц в системе и необходимая для описания свойств открытых систем (с перем. числом частиц).

X. п. m i i -го компонента многокомпонентной системы равен частной производной от любого из термодинамич. потенциалов по кол-ву (числу частиц) этого компонента при пост. значениях остальных термодинамич. переменных, определяющих данный термодинамич. потенциал, напр. m i = (дF/дN i) T,V,N (F- свободная энергия, Т- темп-ра, V- объём, j i ). Т. о., в системах с перем. числом частиц в выражение для дифференциала, напр. dF, следует добавить величину :

где р - давление, S -энтропия. Наиб. просто X. п. связан с термодинамич. потенциалом G (см. Гиббса энергия): . Для однокомпонентной системы X. п. m = G/N,

т. е. представляет собой энергию Гиббса, отнесённую к одной частице. Вследствие аддитивности G , кроме давления и темп-ры, X. п. зависит только от концентраций отд. компонентов, но не от числа частиц в каждом компоненте. В простейшем случае идеальных газов m i зависит только от концентрации i -го компонента:

где -полное число частиц, m ~ i -X. п. чистого i -го

компонента. Часто величины m i удобно использовать в качестве независимых термодинамич. переменных вместо N i . В переменных Т, V, m i состояние системы характеризует термодинамич. потенциал

X. п. является термодинамич. параметром в большом каноническом распределении Гиббса для систем с перем. числом частиц. В качестве нормировочной постоянной X. п. входит в распределения Больцмана, Бозе - Эйнштейна и Ферми - Дирака для частиц идеальных газов (см. Статистическая физика). В системах, к к-рым применима статистика Больцмана или Бозе - Эйнштейна, X. п. всегда отрицателен. Для ферми-газа X. п. при нулевой темп-ре положителен и определяет граничную ферми-энергию (см. Ферми-поверхность вырождения температуру. Если

полное число частиц в системе не фиксировано, а должно определяться из условия термодинамич. равновесия, как, напр., для фононов в твёрдом теле или для фотонов в случае равновесного теплового излучения, то равновесие характеризуется равенством нулю X. п.

Понятие X. п. позволяет сформулировать условия равновесия термодинамического. Одно из условий состоит в том, что X. п. любого компонента одинаков в разл. фазах и в разных местах одной фазы. Это обусловлено возможностью перераспределения частиц, приводящего к выравниванию X. п. Для систем в пространственно неоднородном внеш. поле равновесие означает, что

где m i 0 - X. п. в отсутствие поля, U i (r)- потенц. энергия частиц i -го компонента во внеш. поле. Для газа в поле тяжести это условие приводит к барометрич. ф-ле для плотности газа. В случае заряж. частиц в электрич. поле (напр., в полупроводниках) величину m i наз. э л е к т р о х им и ч е с к и м п о т е н ц и а л о м, оставляя название X. п. за m i 0 . Равенство значений X. п. для частиц одного компонента, находящихся в разных фазах, определяет условия равновесия при фазовых переходах ( Гиббса правило фаз )и хим. реакциях (закон действующих масс), ионизационное равновесие, свойства растворов (законы Вант-Гоффа, Генри , Рауля) и т. д. Если для частиц одного из компонентов переход из одной части системы в другую невозможен, то для этого компонента условия постоянства X. п. нарушаются и в системе возникает осмотическое давление (см. Осмос).

X. п. был введён Дж. У. Гиббсом (J. W. Gibbs) в 1875 при рассмотрении хим. равновесия в многокомпонентных системах, отсюда его название. Численно X. п. выражается в единицах энергии на единицу массы (Дж/кг), или на единицу кол-ва вещества (Дж/моль), или на 1 частицу.

Лит. см. при ст. Термодинамика. А. Э. Мейерович.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ХИМИЧЕСКИЙ ПОТЕНЦИАЛ" в других словарях:

    Понятие, используемое для описания термодинамического равновесия в многокомпонентных системах. Обычно химический потенциал компонента системы вычисляют как частную производную гиббсовой энергии по числу частиц (или молей) этого компонента при… … Большой Энциклопедический словарь

    химический потенциал - – парциальная молярная энергия Гиббса вещества. Химический потенциал данного вещества отражает изменение энергии Гиббса при добавлении 1 моля этого вещества в изучаемую систему. Общая химия: учебник / А. В. Жолнин … Химические термины

    химический потенциал - Гиббса … Cловарь химических синонимов I

    химический потенциал - Частная производная от характеристической функции по массе компонента при постоянных соответствующих независимых параметрах и массах остальных компонентов. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет… … Справочник технического переводчика

    химический потенциал - термодинамическая функция, применяемая при описании состояний систем с переменный числом компонентов. В системе из i компонентов химический потенциал определяется как приращение ее внутренней энергии при добавлени бесконечно… … Энциклопедический словарь по металлургии

    Понятие, используемое для описания термодинамического равновесия в многокомпонентных и (или) многофазных системах. Обычно химический потенциал компонента системы вычисляют как частную производную энергии Гиббса по числу частиц (или молей) этого… … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Потенциал. Термодинамические величины … Википедия

    химический потенциал - cheminis potencialas statusas T sritis Standartizacija ir metrologija apibrėžtis Bendrąja prasme – intensyvusis dydis. Tai termodinaminė jėga μ, apibūdinanti sistemos pusiausviruosius ir nepusiausviruosius medžiagos mainus: medžiaga visada… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    химический потенциал - cheminis potencialas statusas T sritis chemija apibrėžtis Intensyvusis dydis, apibūdinantis fizikocheminius termodinaminės sistemos virsmus ir pusiausvyrą. atitikmenys: angl. chemical potential rus. химический потенциал … Chemijos terminų aiškinamasis žodynas

    химический потенциал - cheminis potencialas statusas T sritis fizika atitikmenys: angl. chemical potential vok. chemisches Potential, n rus. химический потенциал, m pranc. potentiel chimique, m … Fizikos terminų žodynas