Кто известен работами по математической логике. Основы математической логики

Введение

Учебные вопросы:

          Понятия и определения математической логики.

          Основные операции алгебры высказываний.

          Законы и следствия булевой алгебры.

Заключение

Введение

Теоретической основой построения ЭВМ служат специальные математические дисциплины. Одной из них является алгебра логики, или булева алгебра (Дж. Буль - английский математик XIX в., основоположник этой дисциплины). Ее аппарат широко используют для описания схем ЭВМ, их проектирования и оптимизации.

1. Понятия и определения математической логики.

Логика - наука, изучающая законы и формы мышления; учение о способах рассуждений и доказательств.

Математическая логика (теоретическая логика, символическая логика) - раздел математики, изучающий доказательства и вопросы оснований математики. «Предмет современной математической логики разнообразен». Согласно определению П. С. Порецкого, «математическая логика есть логика по предмету, математика по методу». Согласно определению Н. И. Кондакова, «математическая логика - вторая, после традиционной логики, ступень в развитии формальной логики, применяющая математические методы и специальный аппарат символов и исследующая мышление с помощью исчислений (формализованных языков)». Это определение соответствует определению С. К. Клини: математическая логика - это «логика, развиваемая с помощью математических методов». Также А. А. Марков определяет современную логику «точной наукой, применяющей математические методы». Все эти определения не противоречат, а дополняют друг друга.

Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику. Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие - нет.

Математическая логика изучает логические связи и отношения, лежащие в основе логического (дедуктивного) вывода , с использованием языка математики.

Законы мира, сущность предметов, общее в них мы познаем посредством абстрактного мышления. Основными формами абстрактного мышления являются понятия, суждения и умозаключения.

Понятие - форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов. Понятия в языке выражаются словами.

Объем понятия - множество предметов, каждому из которых принадлежат признаки, составляющие содержание понятия. Выделяют понятия общие и единичные.

Выделяют следующие отношения понятий по объему:

    тождество или совпадение объемов, означающее, что объем одного понятия равен объему другого понятия;

    подчинение или включение объемов: объем одного из понятий полностью включен в объем другого;

    исключение объемов - случай, в котором нет ни одного признака, который бы находился в двух объемах;

    пересечение или частичное совпадение объемов;

    соподчинение объемов - случай, когда объемы двух понятий, исключающие друг друга, входят в объем третьего.

Суждение - это форма мышления, в которой что-либо утверждается или отрицается о предметах, признаках или их отношениях.

Умозаключение - форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, мы по определенным правилам вывода получаем суждение-заключение.

Алгебра в широком смысле этого слова наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться не только над числами, но и над другими математическими объектами.

Алгебра логики (алгебра высказываний, булева алгебра 1 ) - раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается (т. н. бинарная или двоичная логика, в отличие от, например, троичной логики), что высказывания могут быть только истинными или ложными.

Примеры алгебр: алгебра натуральных чисел, алгебра рациональных чисел, алгебра многочленов, алгебра векторов, алгебра матриц, алгебра множеств и т.д. Объектами алгебры логики или булевой алгебры являются высказывания.

Высказывание - это любое предложение какого-либо языка (утверждение), содержание которого можно определить как истинное или ложное.

Всякое высказывание или истинно , или ложно ; быть одновременно и тем и другим оно не может.

В естественном языке высказывания выражаются повествовательными предложениями. Восклицательные и вопросительные предложения высказываниями не являются.

Высказывания могут выражаться с помощью математических, физических, химических и прочих знаков. Из двух числовых выражений можно составить высказывания, соединив их знаками равенства или неравенства.

Высказывание называется простым (элементарным), если никакая его часть сама не является высказыванием.

Высказывание, состоящее из простых высказываний, называются составным (сложным).

Простые высказывания в алгебре логики обозначаются заглавными латинскими буквами:

А = {Аристотель - основоположник логики},

В = {На яблонях растут бананы}.

Обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания: «Сумма углов треугольника равна 180 градусов» устанавливается геометрией, причем - в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского - ложным.

Истинному высказыванию ставится в соответствие 1, ложному - 0. Таким образом, А = 1, В = 0.

Алгебра логики отвлекается от смысловой содержательности высказываний. Ее интересует только один факт - истинно или ложно данное высказывание, что дает возможность определять истинность или ложность составных высказываний алгебраическими методами.

Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

математическая логика - ЛОГИКА СИМВОЛИЧЕСКАЯ, математическая логика, теоретическая логика область логики, в которой логические выводы исследуются посредством логических исчислений на основе строгого символического языка. Термин «Л. с.» был, по видимому, впервые… … Энциклопедия эпистемологии и философии науки

МАТЕМАТИЧЕСКАЯ ЛОГИКА - Ее еще называют символической логикой. М. л. это та же самая Аристотелева силлогистическая логика, но только громоздкие словесные выводы заменены в ней математической символикой. Этим достигается, во первых, краткость, во вторых, ясность, в… … Энциклопедия культурологии

МАТЕМАТИЧЕСКАЯ ЛОГИКА - МАТЕМАТИЧЕСКАЯ логика, дедуктивная логика, использующая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений … Современная энциклопедия

МАТЕМАТИЧЕСКАЯ ЛОГИКА - дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике … Большой Энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - (символическая логика), аналитический раздел логики, результат применения математических методов к проблемам классической логики. Рассматривает понятия, которые могут быть истинными или ложными, связь между понятиями и оперирование ими, включая… … Научно-технический энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - один из ведущих разделов современной логики и математики. Сформировался в 19 20 ст. как реализация идеи о возможности записать все исходные допущения на языке знаков, аналогичных математическим и тем самым заменить рассуждения вычислениями.… … Новейший философский словарь

математическая логика - сущ., кол во синонимов: 1 логистика (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

математическая логика - — Тематики электросвязь, основные понятия EN mathematical logic … Справочник технического переводчика

МАТЕМАТИЧЕСКАЯ ЛОГИКА - теоретическая логика, символическая логика, раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики. Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе… … Математическая энциклопедия

Книги

  • Математическая логика , Ершов Юрий Леонидович, Палютин Евгений Андреевич. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории… Купить за 1447 грн (только Украина)
  • Математическая логика , Ершов Ю.Л.. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории…

Основная идея математической логики - формализация знаний и рассуждений. Известно, что наиболее легко формализуемые знания - математические. Таким образом, математическая логика, по-существу, - наука о математике, или метаматематика. Центральным понятием математической логики является ``математическое доказательство"". Действительно, ``доказательные"" (иначе говоря, дедуктивные) рассуждения - единственный вид признаваемых в математике рассуждений. Рассуждения в математической логике изучаются с точки зрения формы, а не смысла. По-существу, рассуждения моделируются чисто ``механическим"" процессом переписывания текста (формул). Такой процесс называют выводом. Говорят еще, что математическая логика оперирует только синтаксическими понятиями. Однако обычно всё же важно, как соотносятся рассуждения с действительностью (или нашими представлениями). Поэтому, надо всё же иметь в виду некоторый смысл формул и вывода. При этом используют термин семантика (синоном слова ``смысл"") и чётко разделяют синтаксис и семантику. Когда же действительно интересуются только синтаксисом, часто используют термин ``формальная система"". Мы будем использовать синоним этого термина - ``исчисление"" (используются ещё термины ``формальная теория"" и ``аксиоматика""). Объектом формальных систем являются строки текста (последовательности символов), с помощью которых записываются формулы.

Формальная система определена, если:

Задан алфавит (множество символов, используемых для построения формул).

Выделено множество формул, называемых аксиомами. Это - стартовые точки в выводах.

Задано множество правил вывода, которые позволяют из некоторой формулы (или множества формул) получать новую формулу.

Основные принципы операций

Отрицание

Отрицание логического высказывания -- логическое высказывание, принимающее значение "истинно", если исходное высказывание ложно, и наоборот. Это специальная логическая операция. В зависимости от местоположения различают внешнее и внутреннее отрицание, свойства и роли которых существенно различаются.

1. Внешнее отрицание (пропозициональное) служит для образования сложного высказывания из другого (не обязательно простого) высказывания. В нем утверждается отсутствие положения дел, описываемого в отрицаемом высказывании. Традиционно отрицательное высказывание считается истинным, если, и только если, отрицаемое высказывание ложно. В естественном языке отрицание обычно выражается оборотом «неверно, что», за которым следует отрицаемое высказывание.

В языках формальных теорий отрицание называется особая унарная пропозициональная связка, используемая для образования из одной формулы другой, более сложной. Для обозначений отрицание обычно используются символы «отрицание», «-» или «-- 1». В классической логике высказываний формула -А истинна тогда и только тогда, когда формула А ложна.

Однако в неклассической логике отрицание может не обладать всеми свойствами классического отрицания. В этой связи возникает вполне закономерный вопрос о минимальном наборе свойств, которому должна удовлетворять некоторая унарная операция, чтобы ее можно было считать отрицанием, а также о принципах классификации различных отрицаниях в неклассических формальных теориях (см.: Dunn J.M. and Hardegree G.M.Algebraic Methods in Philosophical Logic. Oxford, 2001).

Фактически указанное выше традиционное понимание внешнего (пропозиционального) отрицания может быть выражено через систему следующих требований: (I) Если А -- истинно (ложно), то не-А -- ложно (истинно); (II) Если не-А -- истинно (ложно), то А -- ложно (истинно). Формально требования (I) и (II) могут быть выражены через условие (1) А р--iB=>B (= --, А, называемое «конструктивная контрапозиция». Отрицание, удовлетворяющее условию (1), принято называть минимальным отрицанием. Однако оказывается, что условие (1) можно разложить на два более слабых условия: (2) А (= В=>-,В р-Аи(3)А(= -- 1 -- А, известных, соответственно, как «контрапозиция» и «введение двойного отрицания». В результате появляется возможность выявить подминимальное отрицание, удовлетворяющее условию (2), но не удовлетворяющее условию (3). Естественно сформулировать условие, обратное (3) и формализующее принцип «снятие двойного отрицания»: (4) --. - А = А. Минимальное отрицание (т.е. удовлетворяющее условию (1) или условиям (2) и (3) вместе), для которого выполняется условие (4), называется отрицание де Моргана. Минимальное отрицание, удовлетворяющее дополнительному свойству (5): Если А -- * В, то для любого С верно, что А р С («свойство абсурдности»), -- называется интуиционистским отрицанием. Можно сформулировать принцип (6), двойственный принципу абсурдности: Если В |=Аи--S р А, то для любого С верно, что С р А. Удовлетворяющее этому принципу отрицания. представляет собой разновидность отрицания в паранепротиворечивой логике. Наконец, отрицание де Моргана (свойства (2), (3), (4)), для которого выполняется (5) или (6), называется орто-отрицание Если в соответствующем исчислении принимается аксиома дистрибутивности для конъюнкции и дизъюнкции, то орто-отрицание называется отрицание Буля, или классическим отрицанием.

2. Внутреннее отрицание входит в состав простого высказывания. Различают отрицание в составе связки (отрицательная связка) и терминное отрицание.

Отрицание в составе связки выражается с помощью частицы «не», стоящей перед глаголом-связкой (если он имеется) или перед смысловым глаголом. Оно служит для выражения суждений об отсутствии каких-то отношений («Иван не знает Петра»), или для образования отрицательной предицирующей связки в составе категорических атрибутивных суждений.

Терминное отрицание используется для образования негативных терминов. Оно выражается через приставку «не» или близкие ей по смыслу («Все неспелые яблоки -- зеленые»).

Конъюнкция

Конъюнкция двух логических высказываний -- логическое высказывание, истинное только тогда, когда они одновременно истинны (от лат. conjunctio -- союз, связь), в широком смысле -- сложное высказывание, образованное с помощью союза «и». В принципе можно говорить о конъюнкции бесконечного числа высказываний (например, о конъюнкции всех истинных предложений математики). В логике конъюнкцией называют логическую связку (операцию, функцию; обозначают: &,); образованное с её помощью сложное высказывание истинно только при условии одинаковой истинности его составляющих. В классической логике высказываний конъюнкция вместе с отрицанием составляют функционально-полную систему пропозициональных связок. Это означает, что через них можно определить любую другую пропозициональную связку. Одним из свойств конъюнкции является коммутативность (т. е. эквивалентность А & В и В & А). Однако, иногда, говорят о некоммутативной, т. е. упорядоченной конъюнкции (примером высказывания с такой конъюнкции может служить: «Ямщик свистнул, и лошади поскакали»).

Дизъюнкция

Дизъюнкция двух логических высказываний -- логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно

(от лат. disjunctio -- разобщение, обособление), в широком смысле -- сложное высказывание, образованное из двух или более предложений с помощью союза «или», выражающего альтернативность, или выбор.

В символической логике дизъюнкцией называют логическую связку (операцию, функцию), образующую из предложений А и В сложное высказывание, обозначаемое обычно как А V В, которое является истинным при истинности по крайней мере одного из двух дизъюнктивных членов: А или В.

В классической логике дизъюнкция вместе с отрицанием образует функционально-полную систему пропозициональных связок, что позволяет определить через них другие пропозициональные связки.

Традиционно принято отличать рассмотренную (нестрогую) дизъюнкцию от строгой (разделительной) дизъюнкции, для которой характерно то, что соответствующее высказывание истинно при условии, когда истинен один и только один дизъюнктивный член.

Импликация

Импликация двух логических высказываний A и B -- логическое высказывание, ложное только тогда, когда B ложно, а A истинно (от лат. implicatio -- сплетение, от implico -- тесно связываю) -- логическая связка, соответствующая грамматической конструкции «если.., то...», с помощью которой из двух простых высказываний образуется сложное высказывание. В импликативном высказывании различают антецедент (основание) -- высказывание, идущее после слова «если», и консеквент (следствие) -- высказывание, идущее за словом «то». Импликативное высказывание представляет в языке логики условное высказывание обычного языка. Последнее играет особую роль, как в повседневных, так и в научных рассуждениях, основной его функцией является обоснование одного путем ссылки на нечто другое.

Выражаемую условным высказыванием связь обосновывающего и обосновываемого трудно охарактеризовать в общем виде, и только иногда природа ее относительно ясна. Эта связь может быть, в частности, связью логического следования, имеющей место между посылками и заключением правильного умозаключения («Если все живые многоклеточные существа смертны и медуза является таким существом, то она смертна»). Связь может представлять собой закон природы («Если тело подвергнуть трению, оно начнет нагреваться») или причинную связь («Если Луна в новолуние находится в узле своей орбиты, наступает солнечное затмение»). Рассматриваемая связь может иметь также характер социальной закономерности, правила, традиции и т.п. («Если меняется экономика, меняется и политика», «Если обещание дано, оно должно быть выполнено»).

Связь, выражаемая условным высказыванием, предполагает, что консеквент с определенной необходимостью «вытекает» из антецедента и что есть некоторый общий закон, сумев сформулировать который, мы можем логически вывести консеквент из антецедента. Например, условное высказывание «Если висмут-- металл, он пластичен» предполагает общий закон «Все металлы пластичны», делающий консеквент данного высказывания логическим следствием его антецедента.

И в обычном языке, и в языке науки условное высказывание, кроме функции обоснования, может выполнять также целый ряд других задач. Оно может формулировать условие, не связанное с к.-л. подразумеваемым общим законом или правилом («Если захочу, разрежу свой плащ»), фиксировать какую-то последовательность («Если прошлое лето было сухим, то в этом году оно дождливое»), выражать в своеобразной форме неверие («Если вы решите задачу, я докажу великую теорему Ферма»), противопоставление («Если в огороде растет капуста, то в саду растет яблоня») и т.п. Многочисленность и разнородность функций условного высказывания существенно затрудняет его анализ.

В логических системах абстрагируются от особенностей обычного употребления условного высказывания, что ведет к различным импликациям. Наиболее известны из них импликация материальная, строгая импликация и релевантная (уместная) импликация.

Материальная импликация -- одна из основных связок классической логики. Определяется она таким образом: импликация ложна только в случае истинности антецедента и ложности консеквента и истинна во всех остальных случаях. Условное высказывание «Если А, то В» предполагает некоторую реальную связь между тем, о чем говорится в А и В; выражение «А материально имплицирует В» такой связи не предполагает.

Строгая импликация определяется через модальное понятие (логической) невозможности: «А строго имплицирует В» означает «Невозможно, чтобы А было истинно, а В ложно».

В релевантной логике импликация понимается как условный союз в его обычном смысле. В случае релевантной импликация нельзя сказать, что истинное высказывание может быть обосновано путем ссылки на любое высказывание и что с помощью ложного высказывания можно обосновать какое угодно высказывание.

Эквивалентность

Эквивалентность двух логических высказываний -- логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны (от позднелат. equivalens - равноценный) - родовое наименование всевозможных отношений типа равенства, т.е. рефлексивных, симметричных и транзитивных бинарных отношений. Примеры: эквиполентность (совпадение по смыслу, значению, содержанию, выразительным и (или) дедуктивным возможностям между понятиями, концепциями, науч. теориями или формализующими их формальными системами) конгруентность или подобие геометрия, фигур; изоморфизм; равномощность множеств и другие эквивалентность каких-либо объектов означает их равенство (тождество) в каком-либо отношении

(например, изоморфные множества неразличимы по своей "структуре", если под "структурой" понимать совокупность тех их свойств, относительно которых эти множества изоморфны). Всякое отношение эквивалентности порождает разбиение множества, на котором оно определено, на попарно не пересекающиеся "классы эквивалентности " в один класс относят при этом эквивалентные друг другу элементы данного множества.

Рассмотрение классов эквивалентности в качестве новых объектов представляет собой один из основных способов порождения (введения) абстрактных понятий в логико-математических (и вообще естественно-научных) теориях. Так, считая эквивалентными дроби a/b и c/d с целыми числителями и знаменателями, если ad=bc, вводят в рассмотрение рациональные числа как классы эквивалентных дробей; считая эквивалентными множества, между которыми можно установить взаимно-однозначное соответствие, вводят понятие мощности (кардинального числа) множества (как класс эквивалентных между собой множеств); считая эквивалентными два куска вещества, вступающие в равных условиях в одинаковые химических реакции, приходят к абстрактному понятию химического состава и т.п.

Термин " эквивалентность" употребляют часто не (только) как родовой, а как синоним некоторых из его частных значений ("эквивалентность теорий" вместо "эквивалентность", " эквивалентность множеств" вместо "равномощность", " эквивалентность слов" в абстрактной алгебре вместо "тождество" и т.п.).

Кванторное высказывание

Кванторное с квантором всеобщности.

Кванторное логическое высказывание с квантором всеобщности ("xA(x)) -- логическое высказывание, истинное только тогда, когда для каждого объекта x из заданной совокупности высказывание A(x) истинно.

Кванторное с квантором существования.

Кванторное логическое высказывание с квантором существования ($xA(x)) -- логическое высказывание, истинное только тогда, когда в заданной совокупности существует объект x, такой, что высказывание A(x) истинно.

Структура математической логики

Раздел «математическая логика» состоит из трёх частей: по неформальному аксиоматическому методу, по логике высказываний и по логике предикатов (первого порядка). Аксиоматический метод построения - первый шаг на пути к формализации теории. Большинство задач, рассматриваемых в математической логике, состоит в доказательстве некоторых утверждений. Математическая логика имеет много разветвлений. Она применяет табличное построение логики высказываний, использует специальный язык символов и формулы логики высказываний.

Неформальный аксиоматический метод

Аксиоматический метод, не фиксирующий жестко применяемого языка и тем самым не фиксирующий границы содержательного понимания предмета, но требующий аксиоматического определения всех специальных для данного предмета исследования понятий. Этот термин не имеет общепринятого толкования.

История развития аксиоматического метода характеризуется все возрастающей степенью формализации. Неформальный аксиоматический метод - определенная ступень в этом процессе.

Первоначальное, данное Евклидом, аксиоматическое построение геометрии отличалось дедуктивным характером изложения, при котором в основу клались определения (пояснения) и аксиомы (очевидные утверждения). Из них, опираясь на здравый смысл и очевидность, выводились следствия. При этом в выводе неявно иногда использовались не зафиксированные в аксиомах предположения геометрия, характера, особенно относящиеся к движению в пространстве и взаимному расположению прямых и точек. Впоследствии были выявлены геометрия, понятия и регламентирующие их употребление аксиомы, неявно используемые Евклидом и его последователями. При этом возникал вопрос: действительно ли выявлены все аксиомы. Руководящий принцип для решения этого вопроса сформулировал Д. Гильберт (D. Hilbert): "Следует добиться того, чтобы с равным успехом можно было говорить вместо точек, прямых и плоскостей о столах, стульях и пивных кружках". Если доказательство не теряет доказательной силы после такой замены, то действительно все используемые в этом доказательстве специальные предположения зафиксированы в аксиомах. Достигаемая при таком подходе степень формализации представляет собой уровень формализации, характерный для неформального аксиоматического метода. Эталоном здесь может служить классический труд Д. Гильберта "Основания геометрии" .

Неформальный аксиоматический метод применяется не только для придания определенной завершенности аксиоматически излагаемой конкретной теории. Он представляет собой действенное орудие математического исследования. Поскольку при изучении системы объектов по этому методу не используется их специфика, или "природа", то доказанные утверждения переносятся на любую систему объектов, удовлетворяющую рассматриваемым аксиомам. Согласно неформальному аксиоматическому методу, аксиомы - это неявные определения первоначальных понятий (а не очевидные истины). Что представляют собой изучаемые объекты - неважно. Все, что нужно о них знать, сформулировано в аксиомах. Предметом изучения аксиоматической теории служит любая ее интерпретация.

Неформальный аксиоматический метод, кроме непременного аксиоматического определения всех специальных понятий, имеет и другую характерную особенность. Это свободное, неконтролируемое аксиомами, основанное на содержательном понимании использование идей и понятий, которые можно применить к любой мыслимой интерпретации, независимо от ее содержания. В частности, широко используются теоретико-множественные и логического понятия и принципы, а также понятия, связанные с идеей счета, и др. Проникновение в аксиоматический метод рассуждений, основанных на содержательном понимании и здравом смысле, а не на аксиомах, объясняется не фиксированностью языка, на котором формулируются и доказываются свойства аксиоматически заданной системы объектов. Фиксирование языка ведет к понятию формальной аксиоматической системы и создает материальную основу для выявления и четкого описания допустимых логических принципов, для контролируемого употребления теоретико-множественных и других общих или не специальных для исследуемой области понятий. Если в языке нет средств (слов) для передачи теоретико-множественных понятий, то этим отсеиваются все доказательства, основанные на использовании таких средств. Если в языке есть средства для выражения некоторых теоретико-множественных понятий, то их применение в доказательствах можно ограничить определенными правилами или аксиомами.

Фиксируя различным образом язык, получают различные теории основного объекта рассмотрения. Например, рассматривая язык узкого исчисления предикатов для теории групп, получают элементарную теорию групп, в которой нельзя сформулировать какого-либо утверждения о подгруппах. Если перейти к языку исчисления предикатов второй ступени, то появляется возможность рассматривать свойства, в которых фигурирует понятие подгруппы. Формализацией неформальный аксиоматический метод в теории групп служит переход к языку системы Цермело - Френкеля с ее аксиоматикой.

Аксиоматический метод

Аксиоматический метод способ построения научной теории, при котором в её основу кладутся некоторые исходные положения (суждения)-- аксиомы, или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путём, посредством доказательств. Построение науки на основе аксиоматический метод обычно называется дедуктивным. Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений, выражающих их через ранее введённые понятия. В той или иной мере дедуктивные доказательства, характерные для аксиоматический метод, применяются во многих науках, однако главная область его приложения -- математика, логика, а также некоторые разделы физики.

Идея аксиоматический метод впервые была высказана в связи с построением геометрии в Древней Греции (Пифагор, Платон, Аристотель, Евклид). Для современной стадии развития аксиоматический метод характерна выдвинутая Гильбертом концепция формального аксиоматический метод, которая ставит задачу точного описания логических средств вывода теорем из аксиом. Основная идея Гильберта -- полная формализация языка науки, при которой её суждения рассматриваются как последовательности знаков (формулы), приобретающие смысл лишь при некоторой конкретной интерпретации. Для вывода теорем из аксиом(и вообще одних формул из других) формулируются спец. правила вывода. Доказательство в такой теории (исчислении, или формальной системе) -- это некоторая последовательность формул, каждая из которых либо есть аксиома, либо получается из предыдущих формул последовательности по какому-либо правилу вывода. В отличие от таких формальных доказательств, свойства самой формальной системы в целом изучаются содержат. средствами метатеории. Основные требования, предъявляемые к аксиоматическим формальным системам,-- непротиворечивость, полнота, независимость аксиом. Гильбертовская программа, предполагавшая возможность доказать непротиворечивость и полноту всей классической математики, в целом оказалась невыполнимой. В 1931 Гёделъ доказал невозможность полной аксиоматизации достаточно развитых научных теорий (напр., арифметики натуральных чисел), что свидетельствовало об ограниченности аксиоматического метода. Основные принципы аксиоматические методы были подвергнуты критике сторонниками интуиционизма и конструктивного направления.

Другие разделы

МАТЕМАТИЧЕСКАЯ ЛОГИКА, дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике.

Важную роль в математической логике играют понятия дедуктивной теории и исчисления. Исчислением называется совокупность правил вывода, позволяющих считать некоторые формулы выводимыми. Правила вывода подразделяются на два класса. Одни из них непосредственно квалифицируют некоторые формулы как выводимые. Такие правила вывода принято называть аксиомами . Другие же позволяют считать выводимыми формулы, синтаксически связанные некоторым заранее определённым способом с конечными наборами выводимых формул. Широко применяемым правилом второго типа является правило modus ponens: если выводимы формулы и, то выводима и формула.

Отношение исчислений к семантике выражается понятиями семантической пригодности и семантической полноты исчисления. Исчисление И называется семантически пригодным для языка Я, если любая выводимая в И формула языка Я является верной. Аналогично, исчисление И называется семантически полным в языке Я, если любая верная формула языка Я выводима в И.


Математическая логика изучает логические связи и отношения, лежащие в основе логического (дедуктивного) вывода, с использованием языка математики.


Многие из рассматриваемых в математической логике языков обладают семантически полными и семантически пригодными исчислениями. В частности, известен результат К. Гёделя о том, что так называемое классическое исчисление предикатов является семантически полным и семантически пригодным для языка классической логики предикатов первого порядка. С другой стороны, имеется немало языков, для которых построение семантически полного и семантически пригодного исчисления невозможно. В этой области классическим результатом является теорема Гёделя о неполноте, утверждающая невозможность семантически полного и семантически пригодного исчисления для языка формальной арифметики.


Стоит отметить, что на практике множество элементарных логических операций является обязательной частью набора инструкций всех современных микропроцессоров и соответственно входит в языки программирования. Это является одним из важнейших практических приложений методов математической логики, изучаемых в современных учебниках информатики.


Разделы математической логики

    Алгебра логики

    Логика высказываний

    Теория доказательств

    Теория моделей

Логика высказываний (или пропозициональная логика от англ. propositional logic, или исчисление высказываний) - это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логику нулевого порядка.

Несмотря на свою важность и широкую сферу применения, логика высказываний является простейшей логикой и имеет очень ограниченные средства для исследования суждений

Алгебра логики (алгебра высказываний) - раздел математической логики, в котором изучаются логические операции над высказываниями . Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

Базовыми элементами, которыми оперирует алгебра логики, являются высказывания. Высказывания строятся над множеством , над элементами которого определены три операции:

    Отрицание (унарная операция),

    Конъюнкция (бинарная),

    Дизъюнкция (бинарная),

а также константы - логический ноль 0 и логическая единица 1.

Теория вероятности - раздел математики, изучающий случайные события их свойства и операции над ними.

В теории вероятностей изучаются, те случайные события, которые могут быть воспроизведены в одних и тех же условиях и обладающие следующим свойством: в результате эксперимента, при условии S событие A может произойти с определенной вероятность p.


Основными понятиями теории вероятности являются: событие, вероятность, случайное событие, случайное явление, математическое ожидание, дисперсия, функция распределения, вероятностное пространство.


Как наука теория вероятностей возникает в середине 17 века. Первые работы появляются, в связи с подсчетом вероятностей в азартных играх. Исследуя прогнозирование выигрыша при бросании костей,
Блез Паскаль и Пьер Ферма , в своей переписке 1654 года, открыли первые вероятностные закономерности. В частности в этой переписки они пришли к понятию математическое ожидание и теоремам умножения и сложения вероятностей. В 1657 году эти результаты были приведены в книге Х. Гюйгенса «О расчетах в азартных играх», которая является первым трактатом по теории вероятностей.

Больших успехов в теории вероятностей достиг
Яков Бернулли : он установил закон больших чисел в простейшем случае, сформулировал многие понятия современной теории вероятностей. Им была написана монография по теории вероятностей, которая была издана посмертно в 1713 году, под названием «Искусство предположений».

В первой половине 19 века теория вероятностей начинает применяться в теории ошибок наблюдений. В это время были доказаны
теорема Муавра - Лапласа (1812) и теорема Пуассона (1837), являющиеся первыми предельными теоремами. Лаплас расширил и систематизировал математические основы теории вероятностей. Гаусс и Лежандр разработали метод наименьших квадратов.

Во второй половине 19 века большинство открытий в теории вероятности были сделаны российскими учеными
П. Л. Чебышёвым и его ученикам и А. М. Ляпуновым и А.А Марковым. В 1867 году Чебышёв сформулировал и достаточно просто доказал закон больших чисел при весьма общих условиях. В 1887 он же впервые сформулировал и предложил метод решения центральной предельной теоремы для сумм независимых случайных величин. В1901 году эта теорема была доказана Ляпуновым при более общих условиях. Марков в 1907 году впервые рассмотрел схему испытаний связанных в цеп, тем самым, положив основу теории Марковских цепей. Так же он внес большой вклад в исследования, касающиеся теории больших чисел и центральной предельной теоремы.

В начале 20 века происходит расширение круга применения теории вероятностей, создаются системы строго математического обоснования и новые методы теории вероятностей. В этот период благодаря трудам
Андрея Николаевича Колмогорова теории вероятностей приобретает современный вид.

В 1926 году, будучи аспирантом, Колмогоров получает необходимые и достаточные условия, при которых имеет место закон больших чисел. В 1933 в своей работе «Основные понятия теории вероятностей» Колмогоров вводит аксиоматику теории вероятностей, которая общепризнанна наилучшей.


Математический аппарат теории вероятности широко используется в науке и технике. В частности в астрономии для расчета орбит комет используется метод наименьших квадратов. В медицине при оценке эффективности методов лечения так же используется теория вероятности.


/ БДЭ Математика /

Дедукция

Помните, Шерлок Холмс постоянно твердил о своих дедуктивных способностях? Так что же такое дедукция?

ДЕДУКЦИЯ (лат. deductio - выведение) - такая форма мышления, когда новая мысль выводится чисто логическим путем из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью, либо аксиомой, либо гипотезой. Последняя мысль данного вывода называется заключением.

Дедуктивное умозаключение, являющееся предметом традиционной логики, применяется нами всякий раз, когда требуется рассмотреть какое - либо явление на основании уже известного нам общего положения и вывести в отношении этого явления необходимое заключение. Нам известен, например, следующий конкретный факт - “данная плоскость пересекает шар” и общее правило относительно всех плоскостей, пересекающих шар, -“всякое сечение шара плоскостью есть круг”. Применяя это общее правило к конкретному факту, каждый правильно мыслящий человек необходимо придет к одному и тому же выводу: “значит данная плоскость есть круг”.


Структура дедуктивного умозаключения и принудительный характер его правил
отобразили самое распространенные отношения между предметами материального мира: отношения рода, вида и особи, т. е. общего, частного и единичного: то, что присуще всем видам данного рода, то присуще и любому виду; то, что присуще всем особям рода, то присуще и каждой особи.

Впервые теория дедукции была обстоятельно разработана Аристотелем. Он выяснил требования, которым должны отвечать отдельные мысли, входящие в состав дедуктивного умозаключения, определил значение терминов и раскрыл правила некоторых видов дедуктивных умозаключений. Положительной стороной аристотелевского учения о дедукции является то,что в нем отобразились реальные закономерности объективного мира.

Под термином “дедукция” в узком смысле слова понимают также следующее:
1) Метод исследования, заключающийся в следующем: для того, чтобы получить новое знание о предмете или группе однородных предметов, надо, во - первых найти ближайший род, в который входят эти предметы, и, во - вторых, применить к ним соответствующий закон, присущий всему данному роду предметов . Дедуктивный метод играет огромную роль в математике. Известно, что все теоремы выводятся логическим путем с помощью дедукции из небольшого конечного числа исходных начал, называемых аксиомами.
2) Форма изложения материала в книге, лекции, докладе, беседе, когда от общих положений, правил, законов идут к менее общим положениям, правилам, законам.
Этот способ позволяет задавать формальные аксиоматические теории .
2.Задание только аксиом
В этом случае правила вывода считаются общеизвестными, поэтому задаются только аксиомы. Поэтому при таком построении теорем, говорят, что полуформальная аксиоматическая теория .
3.Задание только правил вывода
Данный способ построения теорем основывается на задании только правил вывода, поскольку множество аксиом пусто. Исходя из этого, теория, заданная таким образом, являет собой частный случай формальной теории. Позднее эта разновидность стала называться теорией естественного вывода .

К основным свойства дедуктивных теорий относятся:
1. Противоречивость
Противоречивой называется теория, в которой множество теорем покрывает всё множество формул.

2. Полнота
Полной называется теория, в которой для любой формулы F выводима либо сама F , либо ее отрицание -F .
3. Независимость аксиом
Когда отдельную аксиому теории нельзя вывести из остальных аксиом, то ее называют независимой . Система аксиом называется независимой только в том случае, если каждая аксиома в ней независима.
4. Разрешимость
Когда в теории существует эффективный алгоритм, позволяющий определить количество шагов, доказывающих теорему, теория называется разрешимой .
К примеру, логика высказываний, логика первого порядка (исчисление предикатов), формальная арифметика (теория S ).