В состав ядра входят следующие компоненты. Цитология

В 30-х годах 19 века шотландский ученый Роберт Броун (1773-1858) сделал очень важное открытие. Он обнаружил внутри клетки плотное круглое образование, которое назвал ядром.

Роберт Броун

Клеточное ядро выполняет две важнейшие функции. Во-первых, управляет делением, при котором образуются новые клетки, во всем подобные материнской. Во-вторых, регулирует все процессы белкового синтеза, обмена веществ и энергии, идущие в клетке.

Клеточное ядро - важнейшая часть клетки. Оно содержит хромосомы, несущие ДНК, в которой закодированы все свойства клетки. Ядро необходимо для осуществления двух важнейших функций. Во-первых, это деление, при котором образуются новые клетки, во всём подобные материнской. Во-вторых, ядро регулирует все процессы белкового синтеза, обмена веществ и энергии, идущие в клетке.

В отличие от некоторых низших растений и простейших, клетки которых содержат несколько ядер, высшие животные, растения и грибы состоят из клеток, в которых находится одно ядро. Оно имеет форму шара с диаметром от 3 до 10 мкм (рис. 11, 8).ф

Ядро клетки.

Мембрана ядра клетки или ядерная оболочка.

Ядро окружено оболочкой, состоящей из двух мембран,каждая из которых подобна плазматической мембране. Через определенные интервалы обе мембраны сливаются друг с другом, образуя отверстия диаметром 70 нм - ядерные поры. Через них осуществляется активный обмен веществами между ядром и цитоплазмой. Размеры пор позволяют проникать из ядра в цитоплазму даже крупным молекулам и частицам.

В ядрах всегда присутствует одно или несколько ядрышек (рис. 11, 9).

Ядрышко клетки.

Ядрышко формируется определенными участками хромосом; в нем образуются рибосомы.

Ядрышко - это высокоорганизованная структура внутри ядра. В составе ядрышка выявляются большие петли ДНК, содержащие гены РНК, которые с необычайно высокой скоростью транскрибируются РНК полимеразой I . Эти петли называются-"Ядрышковыми организаторами".

В отличие от цитоплазматических оргнанелл ядрышко не имеет мембраны, которое окружало бы его содержимое. Похоже, что оно образовано недозрелыми предшественниками рибосом, специфически связанными друг с другом неизвестным образом. Размер ядрышка отражает степень его функциональной активности, которая широко варьирует в различных клетках и может изменяться в индивидуальной клетке.

В ядрышке происходят транскрипция рибосомных генов, процессинг предшественников рРНК и сборка прерибосомных частиц из рибосомных белков и рРНК. Механизмы формирования ядрышка не ясны. В соответствии с одной из гипотез, ядрышко рассматривают как нуклеопротеиновый комплекс, спонтанно появляющийся в результате объединения регуляторных белково-нуклеиновых комплексов, возникающих на повторяющихся последовательностях рДНК во время их транскрипции. Действительно, гены рРНК человека организованы в виде 250 тандемно повторяющихся последовательностей длиной в 44 т.п.о. каждая, которые вместе с ассоциированными с ними белками формируют сердцевину ядрышка. Оно заполняется другими компонентами во время процессинга рРНК и сборки рибосомных субчастиц.

Также в ядре содержатся нитевидные образования - хромосомы. В ядре клетки человеческого тела (кроме половых клеток) содержится по 46 хромосом - носителей наследственных характеристик организма, передающихся от родителей потомству. В состав хромосом входит дезоксирибонуклеиновая кислота (ДНК). Она играет центральную роль в хранении и передаче наследственных свойств организма.

Ядерный матрикс

Этот комплекс не представляет собой какую-то чистую фракцию, сюда входят компоненты и ядерной оболочки, и ядрышка, и кариоплазмы. С ядерным матриксом оказались связаны как гетерогенная РНК, так и часть ДНК. Эти наблюдения дали основание считать, что матрикс ядра играет важную роль не только в поддержании общей структуры интерфазного ядра, но и может участвовать в регуляции синтеза нуклеиновых кислот.

Хроматин

При наблюдении некоторых живых клеток, особенно растительных или же клеток после фиксации и окраски, внутри ядра выявляются зоны плотного вещества. В состав хроматина входит ДНК в комплексе с белком. В интерфазных клетках хроматин может равномерно заполнять объем ядра или же располагаться отдельными сгустками (хромоцентры). Часто он особенно четко выявляется на периферии ядра (пристеночный, примембранный хроматин) или образует внутри ядра переплетения довольно толстых (около 0.3 мкм) и длинных тяжей, образующих подобие внутриядерной цепи.



Клетка – элементарная структурная, функциональная и генетическая единица в составе всех живых организмов.

Компоненты клетки. Каждая клетка состоит из двух основных компонентов – ядра и цитоплазмы.

Цитоплазма отделена от внешней среды плазматической мембраной (плазмолеммой) и содержит органеллы и включения, погруженные в клеточный матрикс (цитозоль, гиалоплазма ).

Органеллы – постоянные компоненты цитоплазмы, имеющие характерную структуру и специализированные на выполнении определенных функций в клетке.

Включения – непостоянные компоненты цитоплазмы, образованные в результате накопления продуктов метаболизма клеток.

Ядро включает в себя следующие компоненты: ядерную оболочку, хроматин, ядрышко и ядерный матрикс (нуклеоплазму).

Плазмолемма

Все клетки эукариотических организмов имеют пограничную мембрану – плазмолемму (цитолемма , плазматическая мембрана, внешняя клеточная мембрана ). Плазмолемма играет роль полупроницаемого селективного барьера, и с одной стороны, отделяет цитоплазму от окружающей клетку среды, а с другой – обеспечивает её связь с этой средой.

Функции плазмолеммы:

· поддержание формы клетки;

· регуляция переноса веществ и частиц в цитоплазму и из неё;

· распознавание данной клеткой других клеток и межклеточного вещества, прикрепление к ним;

· установление межклеточных контактов и передача информации от одной клетки к другой;

· взаимодействие с сигнальными молекулами (гормоны, медиаторы, цитокины) в связи с наличием на поверхности плазмолеммы специфических рецепторов к ним;

· осуществление движения клетки благодаря связи плазмолеммы с сократимыми элементами цитоскелета.

Химический состав плазмолеммы: липиды (фосфолипиды, холестерин), белки,

Молекулярное строение плазмолеммы описывается жидкостно-мозаичной моделью, согласно которой она состоит из липидного бислоя, в который погружены молекулы белков.

Липидный бислой представлен преимущественно молекулами фосфолипидов (таких как лецитин и цефалин), состоящими из двух длинных неполярных (гидрофобных) цепей жирных кислот и полярной (гидрофильной) головки. В состав большинства мембран входит также холестерин. В мембране гидрофобные цепи обращены внутрь бислоя, а гидрофильные головки – кнаружи. Состав липидов каждой из половин бислоя различен. Электронно-плотные слои соответствуют расположению гидрофильных участков липидных молекул, а разделяющий их светлый слой – гидрофобным.

Мембранные белки составляют более 50% массы мембран. Они удерживаются в липидном бислое за счет гидрофобных взаимодействий с молекулами липидов. Белки обеспечивают специфические свойства мембраны и играют различную биологическую роль: структурных молекул, ферментов, переносчиков и рецепторов. Мембранные белки подразделяются на 2 группы: интегральные и периферические. Периферические белки обычно находятся вне липидного бислоя и непрочно связаны с поверхностью мембраны. Интегральные белки представляют собой белки, либо полностью (собственно интегральные белки), либо частично (полуинтегральные белки) погруженные в липидный бислой. Часть белков целиком пронизывает всю мембрану (трансмембранные белки); они обеспечивают каналы, через которые транспортируется мелкие водорастворимые молекулы и ионы по обе стороны мембраны. Другие белки, которые мозаично распределены в пределах клеточной мембраны, могут иметь липидные (липопротеины) или углеводные (гликопротеины и протеогликаны) боковые цепи. Цепочки олигосахаридов, связанные с белковыми частицами (гликопротеины) или с липидами (гликолипиды), могут выступать за пределы наружной поверхности плазмолеммы, и образуют основу гликокаликса, надмембранного слоя, который выявляется под электронным микроскопом в виде рыхлого слоя умеренной электронной плотности. Углеводные участки придают клетке отрицательный заряд и являются важным компонентом специфических молекул – рецепторов. Рецепторы обеспечивают такие важные процессы в жизнедеятельности клеток, как распознавание других клеток и межклеточного вещества, адгезивные взаимодействия, ответ на действие белковых гормонов, иммунный ответ и.т.д. Гликокаликс является также местом концентрации многих ферментов, часть которых может образовываться не самой клеткой, а лишь адсорбироваться в слое гликокаликса.


Интегральные белки не фиксированы жестко в пределах плазмолеммы, и могут перемещаться путем диффузии в плоскости клеточной мембраны.

Плазмолемма – место обмена материала между клеткой и окружающей клетку средой. Мембранный транспорт может включать однонаправленный перенос молекулы какого-то вещества или совместный транспорт двух различных молекул в одном или противоположных направлениях.

Механизмы мембранного транспорта:

· пассивный транспорт;

· облегченный транспорт;

· активный транспорт;

· эндоцитоз (пиноцитоз; фагоцитоз; рецепторно-опосредованный эндоцитоз);

Пассивный транспорт – это процесс, который не требует затрат энергии, так как перенос мелких водорастворимых молекул (О 2 , Н 2 О, СО 2) и части ионов осуществляется путем диффузии. Такой процесс малоспецифичен, и зависит от градиента концентрации транспортируемой молекулы.

Облегченный транспорт также зависит от градиента концентрации и обеспечивает перенос более крупных гидрофильных молекул, таких как молекулы глюкозы и аминокислот. Этот процесс пассивный, но требует присутствия белков-переносчиков, обладающих специфичностью в отношении транспортируемых молекул.

Активный транспорт – процесс, при котором перенос молекул осуществляется с помощью белков-переносчиков против электрохимического градиента. Для осуществления этого процесса необходимы затраты энергии, которая высвобождается за счет расщепления АТФ. Примером активного транспорта служит натриево-калиевый насос: посредством белка-переносчика Na + -K + -АТФ-азы ионы Na + выводятся из цитоплазмы, а ионы К + одновременно переносятся в неё.

Эндоцитоз – процесс транспорта макромолекул из внеклеточного пространства в клетку. При этом внеклеточный материал захватывается в области впячивания (инвагинации) плазмолеммы, края впячивания затем смыкаются, и таким образом формируется эндоцитозный пузырек (эндосома), окруженный мембраной. Разновидностями эндоцитоза являются пиноцитоз, фагоцитоз, рецепторно-опосредованный эндоцитоз.

Пиноцитоз – захват и поглощение клеткой жидкости вместе с растворимыми в ней веществами.

Фагоцитоз – захват и поглощение клеткой плотных частиц (бактерии, простейшие, грибки, поврежденные клетки, некоторые внеклеточные компоненты).

Экзоцитоз – процесс обратный эндоцитозу. При этом мембранные экзоцитозные пузырьки, содержащие продукты собственного синтеза или непереваренные, вредные вещества, приближаются к плазмолемме и сливаются с ней своей мембраной, которая встраивается в плазмолемму. При этом содержимое экзоцитозного пузырька выделяется во внеклеточное пространство.

Трансцитоз – процесс, объединяющий эндоцитоз и экзоцитоз. На одной поверхности клетки формируется эндоцитозный пузырёк, который переносится к противоположной поверхности клетки и, становясь экзоцитозным пузырьком, выделяет свое содержимое во внеклеточное пространство. Такой процесс характерен для клеток, выстилающих кровеносные сосуды, - эндотелиоцитов, особенно в капиллярах.

Во время эндоцитоза часть плазмолеммы становится эндоцитозным пузырьком; во время экзоцитоза, напротив, мембрана встраивается в плазмолемму. Это явление называется мембранным конвейером.

МЕЖКЛЕТОЧНЫЕ СОЕДИНЕНИЯ

Внешние клеточные мембраны участвуют в образовании межклеточных контактов, которые обеспечивают межклеточные взаимодействия.

Простое межклеточное соединение – сближение плазмолемм соседних клеток на расстояние 15-20 нм. Важную роль при этом играют клеточные рецепторы-гликопротеины, называемые клеточными адгезионными молекулами (КАМ), такие как кадгерины, интегрины, способные распознавать и связывать плазмолеммы соседних клеток. Интегрины – трансмембранные белки, внутриклеточная молекула интегрина через ряд других промежуточных белков (таких как винкулин, α-актинин) связана с цитоскелетом. Наружная часть молекулы через другие гликопротеины (фибронектин, ламинин) связана с клетками и молекулами внеклеточного матрикса. При этом плазмолеммы соседних клеток могут формировать интердигитации, то есть взаимные выпячивания двух соседних клеток. Такой тип межклеточных соединений усиливает механическую прочность соединения клеток и увеличивает площадь обменной поверхности.

Сложные межклеточные соединения – небольшие парные специализированные участки плазматических мембран соседних клеток. Сложные межклеточные соединения подразделяются на изолирующие (запирающие), сцепляющие, обусловливающие механическое сцепление и соединение клеток, и коммуникационные соединения, обеспечивающие химическую (метаболическую, ионную) и электрическую связь между клетками. Особенно ярко выражены межклеточные соединения в эпителиальных тканях.

К изолирующим соединениям относятся плотные контакты. Плотный контакт окружает апикальную часть клеток по периметру в виде пояска. Это область частичного слияния наружных листков плазмолемм двух соседних клеток. Специальные белки, образующие подобие ячеистой сети, как бы «сшивают» соседние плазмолеммы. Основная функция плотного контакта – блокировать проникновение и распространение веществ по межклеточному пространству.

К сцепляющим соединениям относят поясок сцепления и десмосомы. Для сцепляющих соединений характерно наличие слоя примембранных белков, примыкающих к цитоплазме в области контакта, к которым подходят фибриллярные элементы цитоскелета. Поясок сцепления также опоясывает клетки в виде ленты, но локализуется на латеральной поверхности клеточной мембраны ниже, чем плотный контакт. Здесь клетки связаны друг с другом интегральными гликопротеидами, к которым примыкает слой примембранных белков (винкулин и др.). С этим слоем связаны пучки актиновых микрофиламентов. Десмосома- парная структура, состоящая из утолщенных и уплотненных участков цитоплазмы, прилегающих к плазмолеммам соседних клеток, так называемых пластинок прикрепления, разделенных межклеточной щелью. Каждая пластинка прикрепления имеет форму диска (диаметр около 0.5 мкм) и содержит особые белки (десмоплакины и др.), к которым прикреплены пучки промежуточных филаментов (тонофиламентов). При этом находящиеся в межклеточном пространстве Са 2+- связывающие белки взаимодействуют с пластинками прикрепления, благодаря чему усиливается механическое сцепление клеток. Десмосомы не имеют определенной локализации и разбросаны по поверхности клетки.

Коммуникационные соединения представлены щелевыми контактами и синапсами. Щелевое соединение (нексус) представляет собой участок, где плазмолеммы разделены узкой межклеточной щелью. При этом в структуре плазмолемм соседних клеток друг против друга располагаются трубчатые трансмембранные структуры – коннексоны (из белка коннексина), которые образуют межцитоплазматические каналы, обеспечивающие свободный обмен низкомолекулярными соединениями между клетками. Число конексонов в одном щелевом контакте обычно исчисляется сотнями. Функциональная роль щелевых соединений заключается в переносе ионов и мелких молекул от клетки к клетке.

Синаптические соединения – высокоспециализированные контакты нервных клеток, проводящие импульсы в одном направлении. Синаптические контакты устанавливаются также между нейронами и мышечными и железистыми клетками.

ВКЛЮЧЕНИЯ

Включения цитоплазмы – непостоянные компоненты клетки, возникающие и исчезающие в зависимости от метаболического состояния клеток.

Включения подразделяются на трофические, секреторные, экскреторные и пигментные.

Трофические включения разделяются в зависимости от природы накапливаемого вещества на липидные, углеводные и белковые. Липидные включения – это капли нейтрального жира различного диаметра, которые накапливаются в цитоплазме и служат резервом энергетических субстратов, используемых клеткой. Из углеводных включений наиболее распространены гранулы гликогена (полимер глюкозы), эти включения также используются в качестве источника энергии. Примером белковых включений могут служить запасы белка вителлина в яйцеклетках животных. Они являются источником питания на ранних стадиях развития зародыша.

Секреторные включения имеют вид пузырьков, окруженные мембраной и содержащие биологически активные вещества, которые синтезируются в самой клетке, а затем выделяются (секретируются) во внешнюю среду

Экскреторные включения по своему строению сходны с секреторными, но в отличие от них, содержат вредные продукты метаболизма, подлежащие удалению из цитоплазмы клеток.

Пигментные включения представляют собой скопления эндогенных (синтезированных клеткой), или экзогенных (захваченных клеткой извне) окрашенных веществ - пигментов. Наиболее распространенными эндогенными пигментами являются гемоглобин, гемосидерин, билирубин, меланин, липофусцин; к экзогенным пигментам относят каротин, различные красители, пылевые частицы и др.

НЕКЛЕТОЧНЫЕ СТРУКТУРЫ

Клетки – основный элемент всех тканей, определяющий их свойства. Кроме клеток, в состав тканей входят и неклеточные структуры, которые являются производными клеток. К неклеточным структурам относят: межклеточное вещество, симпласты и синцитии.

Межклеточное вещество – продукт жизнедеятельности клеток данной ткани. Состав и физико-химические свойства межклеточного вещества зависят от типа ткани. Особенно велико содержание и важна функциональная роль межклеточного вещества в тканях внутренней среды (плазма крови, аморфное вещество и волокна волокнистых и скелетных соединительных тканей).

Симпласт – структура, образованная в результате слияния клеток с утратой их границ и формированием единой цитоплазматической массы, в которой находятся многочисленные ядра. К симпластам относятся волокна скелетной мышечной ткани, наружной слой трофобласта ворсинок хориона (в период эмбрионального развития), гигантские клетки очагов хронического воспаления, остеокласты костной ткани.

Синцитий – структура, возникающая вследствие неполной цитотомии при делении клеток, в результате чего дочерние клетки остаются связанными друг с другом с помощью тонких цитоплазматических мостиков. В организме человека имеется единственный синцитий, представленный частью сперматогенных элементов в семенных канальцах яичка.


ЦИТОЛОГИЯ

Органеллы.

Органеллы – постоянно присутствующие в цитоплазме структуры, имеющие определенное строение и специализированные на выполнении определенных функций в клетке. Они подразделяются на органеллы общего значения и специальные органеллы.

Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся: митохондрии, рибосомы, эндоплазматическая сеть (ЭПС), комплекс Гольджи, лизосомы, пероксисомы, клеточный центр, компоненты цитоскелета.

Специальные органеллы содержатся лишь в некоторых специализированных клетках, где они обеспечивают выполнение специальных функций. К специальным органеллам относят реснички, жгутики, миофибриллы, акросома. Все специальные органеллы образуются при развитии клетки как производные органелл общего значения, так, например, акросома спермия является производным комплекса Гольджи, реснички и жгутики – микротрубочек цитоскелета и т.д.

В состав многих органелл входит элементарная биологическая мембрана, поэтому органеллы подразделяются также на мембранные и немембранные. К мембранным органеллам относят митохондрии, ЭПС, комплекс Гольджи, лизосомы, пероксисомы; к немембранным органеллам – рибосомы, клеточный центр, компоненты цитоскелета, микроворсинки, реснички, жгутики.

Элементарная биологическая мембрана, входящая в состав клеточных органелл, по своему строению представляет собой бислой липидов со встроенными белками и сходна со строением плазмолеммы, но не идентична ей.

СИНТЕТИЧЕСКИЙ АППАРАТ КЛЕТКИ

Синтетический аппарат клеток включает органеллы, участвующие в синтезе различных веществ. К таким органеллам относятся рибосомы, эндоплазматическая сеть и комплекс Гольджи. Деятельность синтетического аппарата клетки контролируется активностью генов, локализованных в ядре.

Рибосомы – мелкие, плотные немембранные органеллы, диаметром 15-30 нм. Функция рибосом – синтез белка путем соединения аминокислот в полипептидные цепочки. Каждая рибосома состоит из двух субъединиц: большой и малой. Субъединицы образованы рибосомальными РНК (рРНК) и особыми белками (около 80 видов). Соотношение рРНК и белков равно 1:1. Субъединицы собираются в ядре из рРНК, которая образуется в ядрышке, и белков, которые синтезируются в цитоплазме и поступают в ядро. Затем субъединицы рибосом через ядерные поры перемещаются в цитоплазму, где они участвуют в синтезе белка.

Рибосомы могут встречаться в цитоплазме как отдельные гранулы (функционально неактивные, не транслирующие рибосомы), так и в форме скоплений – полирибосом (полисом) – активные рибосомы. Отдельные рибосомы полисом удерживаются вместе нитью информационной РНК.

Полисомы могут свободно располагаться в гиалоплазме, или быть прикрепленными к мембранам эндоплазматической сети (ЭПС). При этом белки, которые синтезируются на свободных полисомах, остаются в гиалоплазме и далее используются самой клеткой. Полисомы, которые своими большими субъединицами прикреплены к мембранам ЭПС, синтезируют белки, накапливающиеся в просвете цистерн ЭПС. В дальнейшем эти белки либо выводятся из клетки (например, пищеварительные ферменты, гормоны), либо остаются в клетке в структурах, ограниченных мембраной (например, лизосомы с набором лизосомальных ферментов, специфические гранулы лейкоцитов, и.т.д).

Рибосомы, в связи с наличием рРНК, интенсивно окрашиваются основными красителями (гематоксилин, метиленовый синий).

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ

Эндоплазматическая сеть (ЭПС) – система уплощенных, трубчатых, везикулярных структур. Название органеллы обусловлено тем, что её многочисленные элементы (цистерны, трубочки, пузырьки) образуют единую, непрерывную трехмерную сеть. Степень развития ЭПС варьирует в различных клетках, и даже в разных участках одной и той же клетки, и зависит от функциональной активности клеток. Различают две разновидности ЭПС: гранулярную ЭПС (грЭПС) и гладкую, или агранулярную ЭПС (аЭПС), которые связаны между собой в переходной области.

Гранулярная ЭПС образована мембранными трубочками и уплощенными цистернами, на наружной (обращенной в сторону гиалоплазмы) поверхности которых расположены рибосомы и полисомы. Прикрепление рибосом происходит благодаря интегральным рецепторным белкам мембран грЭПС – рибофоринам. Эти же белки формируют гидрофобные каналы в мембране грЭПС для проникновения синтезированной белковой цепочки в просвет цистерн. Основная функция грЭПС: сегрегация (отделение) вновь синтезированных белковых молекул от гиалоплазмы. Таким образом, грЭПС обеспечивает: 1) биосинтез белков, предназначенных для экспорта из клетки; 2) биосинтез мембранных белков. Белковые молекулы накапливаются внутри просвета цистерн, приобретают вторичную и третичную структуру, а также подвергаются начальным посттрансляционным изменениям – гидроксилированию, сульфатированию, фосфорилированию и гликозилированию (присоединение к белкам олигосахаридов с образованием гликопротеинов).

ГрЭПС присутствует во всех клетках, но наиболее развита в клетках, специализирующихся на белковом синтезе: в эпителиальных клетках поджелудочной железы, вырабатывающих пищеварительные ферменты; в фибробластах соединительной ткани, синтезирующих коллаген; в плазматических клетках, продуцирующих иммуноглобулины

Агранулярная ЭПС (аЭПС) представляет собой трехмерную сеть мембранных трубочек, канальцев, пузырьков, на поверхности которых рибосомы отсутствуют .

Функции аЭПС: 1) участие в синтезе липидов, в том числе мембранных; 2) метаболизм (синтез и разрушение) гликогена; 3) синтез холестерина и стероидов; 4) нейтрализация и детоксикация эндогенных и экзогенных токсичных веществ; 5) накопление ионов Са 2+ (особенно в специализированной виде аЭПС – саркоплазматической сети мышечных клеток).

Обычно аЭПС занимает в цитоплазме меньший объем, чем грЭПС. Но в клетках, активно продуцирующих стероидные гормоны – клетки коркового вещества надпочечников, интерстициальные гландулоциты яичка, клетки желтого тела яичника – аЭПС занимает значительную часть объема клеток. Хорошо развита аЭПС и в клетках печени

КОМПЛЕКС ГОЛЬДЖИ

Комплекс Гольджи – мембранная органелла, образованная тремя основными элементами: 1) скопления уплощенных цистерн; 2) мелкими пузырьками; 3) конденсирующими вакуолями. Комплекс этих элементов называется диктиосомой. Некоторые типы клеток могут иметь до нескольких сотен диктиосом.

Цистерны (1) имеют вид изогнутых дисков с несколько расширенными периферическими отделами. Цистерны образуют группу в виде стопки из 3-30 элементов. Выпуклая сторона этой группы обращена обычно к ядру, вогнутая – к плазмолемме. От периферических расширений цистерн отщепляются пузырьки и вакуоли. Пузырьки (2) – мелкие (диаметр 40-80 нм), окруженные мембраной сферические элементы с содержимым умеренной электронной плотности. Вакуоли (3) – крупные (диаметр 0.1-1.0 мкм), сферические образования, отделяющиеся от зрелой поверхности комплекса Гольджи в некоторых железистых клетках. Вакуоли содержат секреторный продукт, находящийся в процессе конденсации.

Функции комплекса Гольджи:

1. синтез полисахаридов и гликопротеинов (гликокаликса, слизи);

2. модификация белковых молекул (терминальное гликозилирование – включение углеводных компонентов; фосфорилирование – добавление фосфатных групп; ацилирование – добавление жирных кислот; сульфатирование – добавление сульфатных остатков и т.д.;

3. конденсация секреторного продукта (в конденсирующих вакуолях) и образование секреторных гранул;

4. сортировка белков на транс-поверхности;

5. упаковка секреторных продуктов в мембранные структуры.

Секреторные продукты, обработанные в комплексе Гольджи, оказываются далее в секреторных гранулах (1), которые выделяются путем экзоцитоза или остаются в клетке (например, в виде специфических гранул зернистых лейкоцитов); в первичных лизосомах (2); или в окаймленных пузырьках (3), в которых интегральные белки транспортируются в плазмолемму.

МИТОХОНДРИИ

Митохондрии – мембранные органеллы, присутствующих во всех эукариотических клетках, и представляющие собой энергетический аппарат клетки.

Функции митохондрий:

1) основная – обеспечение клетки легко доступной энергией, которая образуется благодаря окислению метаболитов, и запасается частично в виде высоко-энергетических фосфатных связей АТФ;

2) участие в биосинтезе стероидов;

3) участие в окислении жирных кислот.

Митохондрии могут иметь эллиптическую, палочковидную или нитевидную форму. При специальных методах окраски митохондрии в световом микроскопе выглядят как короткие палочки, зерна или нити. Число митохондрий в разных клетках и их распределение в пределах клетки варьирует. Клетки содержат большое количество митохондрий – так, в клетке печени их около 800, - но всегда в числе, характерном для этого типа клетки. Много митохондрий встречается в клетках с активным метаболизмом, требующим высоких энергетических затрат: кардиомиоцитах, клетках почечных канальцев, париетальных клетках желез дна желудка и т.д.

Под электронным микроскопом митохондрии имеют характерную структуру. Каждая митохондрия состоит из наружной и внутренней мембран, между которыми находится межмембранное пространство. Внутренняя мембрана образует складки - кристы, обращенные внутрь митохондрии. Пространство, ограниченное внутренней мембраной, заполнено митохондриальным матриксом, - мелкозернистым материалом различной электронной плотности.

Наружная мембрана митохондрий содержит много молекул специализированных транспортных белков (например, порин), что обеспечивает её высокую проницаемость, а также белки-рецепторы, распознающие белки, которые переносятся через обе мембраны митохондрий в особых точках их контакта – зонах слипания.

Внутренняя мембрана митохондрий образует складки – кристы, благодаря чему значительно увеличивается внутренняя поверхность митохондрий. В состав внутренней мембраны входят транспортные белки; ферменты дыхательной цепи и сукцинатдегидрогеназа; комплекс АТФ-синтетазы. На кристах имеются элементарные частицы (оксисомы, или F 1 -частицы), состоящие из округлой головки (9 нм) и цилиндрической ножки. Именно на них происходит сопряжение процессов окисления и фосфорилирования (АДФ → АТФ). Чаще всего кристы располагаются перпендикулярно длинной оси митохондрий и имеют пластинчатую (ламеллярную ) форму. Для клеток, синтезирующих стероидные гормоны, кристы имеют вид трубочек или пузырьков - тубулярно-везикулярные кристы. В этих клетках ферменты стероидного синтеза частично локализуются на внутренней мембране митохондрий. Число и площадь крист отражает функциональную активность клеток: наибольшая площадь крист характерна, например, для митохондрий клеток сердечной мышцы, где потребность в энергии постоянно очень велика.

Митохондриальный матрикс – мелкозернистое вещество, заполняющее полость митохондрии. Матрикс содержит несколько сотен ферментов: ферменты цикла Кребса, окисления жирных кислот, белкового синтеза . Здесь иногда встречаются митохондриальные гранулы , а также локализуются митохондриальные ДНК, иРНК, тРНК, рРНК и митохондриальные рибосомы. Митохондриальные гранулы – частицы высокой электронной плотности диаметром 20-50 нм, содержащие ионы Са 2+ и Мg 2+ .

ЛИЗОСОМЫ

Лизосомы – мембранные органеллы, которые обеспечивают внутриклеточное переваривание (расщепление) макромолекул внеклеточного и внутриклеточного происхождения, и обновление компонентов клетки.

Морфологически лизосомы представляют собой округлые пузырьки, ограниченные мембраной и содержащие большое количество различных гидролаз (более 60 ферментов). Наиболее характерными ферментами лизосом являются: кислая фосфатаза, протеазы, нуклеазы, сульфатазы, липазы, гликозидазы. Все литические ферменты лизосом представляют собой кислые гидролазы, т.е. оптимум их активности проявляется при рН≈5. Литические ферменты синтезируются и накапливаются в грЭПС, далее переносятся в комплекс Гольджи, где модифицируются и упаковываются в мембраны. Мембрана лизосом (около 6 нм толщиной) обладает протонным насосом, вызывающим закисление среды внутри органелл, обеспечивает диффузию низкомолекулярных продуктов переваривания макромолекул в гиалоплазму и препятствует утечке литических ферментов в гиалоплазму. Повреждение мембраны приводит к разрушению клетки вследствие самопереваривания.

Лизосомы подразделяются на первичные (неактивные) и вторичные (активные).

Первичные лизосомы (гидролазные пузырьки) – округлые пузырьки небольшого размера (обычно около 50 нм диаметром), с мелкозернистым, гомогенным, плотным матриксом. Надежная идентификация первичных лизосом возможна только при гистохимическом выявлении характерных ферментов (кислая фосфатаза). Первичные лизосомы – неактивные структуры, еще не вступившие в процессы расщепления субстратов.

Вторичные лизосомы – органеллы, активно участвующие в процессах внутриклеточного переваривания. Диаметр вторичных лизосом обычно составляет 0.5-2 мкм, их форма и структура могут существенно варьировать в зависимости от перевариваемого субстрата, но обычно содержимое вторичных лизосом гетерогенно. Вторичная лизосома – результат слияния первичной лизосомы с фагосомой или аутофагосомой.

Фаголизосома формируется путем слияния первичной лизосомы с фагосомой - мембранным пузырьком, содержащим материал, захваченный клеткой извне. Процесс разрушения этого материала называется гетерофагией. Гетерофагия играет важную роль в функции всех клеток. Особое значение гетерофагия имеет для клеток, осуществляющих защитную функцию, таких как макрофаги и нейтрофильные лейкоциты, которые захватывают и переваривают болезнетворные микроорганизмы.

Дефицит лизосомальных ферментов может приводить к развитию ряда заболеваний (болезни накопления), вызванных накоплением в клетках непереваренных веществ, которые нарушают функцию клеток

Аутофаголизосома образуется при слиянии первичной лизосомы с аутофагосомой - мембранным пузырьком, содержащим собственные компоненты клетки, которые подлежат разрушению. Источником мембраны, окружающей клеточные компоненты, служит ЭПС. Процесс переваривания внутриклеточного материала называется аутофагией. Аутофагия обеспечивает постоянное обновление клеточных структур благодаря перевариванию митохондрий, полисом, фрагментов мембран. Частным случаем аутофагии является кринофагия – лизосомальное разрушение избытка невыведенного секрета.

Мультивезикулярное тельце – крупная вакуоль (диаметр 200-800 нм), окруженная мембраной, и содержащая мелкие мембранные пузырьки (эндосомы). Матрикс тельца содержит литические ферменты.

Остаточные тельца – лизосомы, содержащие непереваренный материал, которые могут находиться в цитоплазме длительное время.

ЦИТОСКЕЛЕТ

Цитоскелет – сложная трехмерная сеть немембранных органелл: микротрубочек, микрофиламентов, промежуточных филаментов и микротрабекул.

Основные функции цитоскелета:

1. поддержание и изменение формы клеток;

2. перемещение компонентов внутри клетки;

3. транспорт веществ внутрь клетки и из клетки;

4. обеспечение подвижности клетки;

5. участие в межклеточных соединениях (опоясывающий поясок, десмосомы);

6. участие в формировании других, более сложных клеточных органелл (клеточный центр, реснички, жгутики, микроворсинки).

Микротрубочки

Микротрубочки – наиболее крупные компоненты цитоскелета. Микротрубочки – полые цилиндрические образования различной длины, с диаметром 24-25 нм, с толщиной стенки 5 нм.

Стенка микротрубочки состоит из спирально расположенных нитей – протофиламентов, образованных димерами из глобулярных белковых молекул – α- и β-тубулина. Стенка микротрубочки образована 13 субъединицами-протофиламентами.

Таким образом, к функциям микротрубочек относятся:

1) поддержание стабильной формы клеток, и порядка распределения её компонентов;

2) обеспечение внутриклеточного транспорта, в том числе органелл, пузырьков, секреторных гранул (благодаря некоторым белкам, ассоциированным с микротрубочками);

3) образование основы центриолей и ахроматинового веретена деления и обеспечение движения хромосом в процессе митоза;

4) образование основы ресничек и жгутиков, а также обеспечение их движения.

Клеточный центр

Клеточный центр образован двумя полыми цилиндрическими структурами - центриолями, которые расположены под прямым углом друг к другу. В неделящейся клетке выявляется одна пара центриолей – диплосома, которая располагается обычно вблизи ядра. Перед делением клетки в S-периоде интерфазы происходит дупликация центриолей: под прямым углом к каждой зрелой (материнской) центриоли пары образуется новая (дочерняя) центриоль. В ранней профазе митоза пары центриолей расходятся к полюсам клетки и служат центрами образования микротрубочек ахроматинового веретена деления.

Реснички и жгутики

Реснички и жгутики являются выростами цитоплазмы, обладающие подвижностью. Основу ресничек и жгутиков составляет каркас из микротрубочек, называемый аксонемой.

В основании каждой реснички или жгутика лежит базальное тельце, сходное по строению с центриолью. На уровне апикального конца базального тельца микротрубочка С триплета заканчивается, тогда как микротрубочки А и В продолжаются в соответствующие микротрубочки аксонемы реснички. При развитии ресничек или жгутика базальное тельце играет роль матрицы, на которой происходит сборка компонентов аксонемы.

Микрофиламенты

Микрофиламенты – тонкие белковые нити диаметром 5-7 нм, расположенные в цитоплазме поодиночке, в виде сетей или упорядоченными пучками (в скелетной и сердечной мышцах).

Основной белок микрофиламентов – актин – встречается в клетках как в мономерной форме (глобулярный актин), так и в виде полимерного фибриллярного актина: глобулярные субъединицы в присутствии Са 2+ и цАМФ (циклического аденозин монофосфата) способны агрегировать в длинные цепи, состоящие из двух скрученных нитей фибриллярного актина. В микрофиламентах фибриллярный актин взаимодействует с рядом актин-связывающих белков, которые регулируют степень полимеризации актина или способствуют связыванию отдельных микрофиламентов в системы.

Функции микрофиламентов:

1. в мышечных волокнах и клетках актиновые микрофиламенты образуют упорядоченные пучки и при взаимодействии с миозиновыми филаментами обеспечивают их сокращение.

2. в немышечных клетках микрофиламенты образуют кортикальную (терминальную) сеть, в которой микрофиламенты сшиты с помощью особых белков (филамин и др.). Кортикальная сеть, с одной стороны, обеспечивает поддержание формы клетки, а с другой - способствует изменениям формы плазмолеммы, обеспечивая, таким образом, функции эндо- и экзоцитоза, миграции клеток, образования псевдоподий.

3. микрофиламенты тесно связаны (посредством белков минимиозинов) с органеллами, транспортными пузырьками, секреторными гранулами и играют важную роль в их перемещении внутри цитоплазмы.

4. микрофиламенты формируют сократимую перетяжку (срединное тельце) при цитотомии, завершающей клеточное деление.

5. микрофиламенты участвуют в организации структуры межклеточных соединений (zonula adherens – поясок сцепления).

6. микрофиламенты являются основой специальных выростов цитоплазмы – микроворсинок и стереоцилий.

Микроворсинки

Микроворсинки – пальцевидные выросты цитоплазмы клетки диаметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты. Основа каждой микроворсинки – пучок, содержащий около 40 микрофиламентов, расположенных вдоль её длинной оси. Микрофиламенты имеют поперечные сшивки из белков (фимбрин, виллин), и прикреплены к плазмолемме особыми белковыми мостиками (минимиозин). У основания микроворсинки микрофиламенты пучка вплетаются в терминальную сеть.

Стереоцилии – длинные, иногда ветвящиеся микроворсинки, имеющие каркас из микрофиламентов. Они встречаются редко (в главных клетках эпителия протока придатка семенника).

ЦИТОЛОГИЯ.

ЯДРО. ДЕЛЕНИЕ КЛЕТКИ

Ядро – важнейший компонент клетки, содержащий её генетический аппарат.

Функции ядра:

1.хранение генетической информации (в молекулах ДНК, находящихся в хромосомах);

2.реализация генетической информации, контролирующей различные процессы в клетке: транскрипция информационных, рибосомальных, транспортных РНК → синтетическая активность; апоптоз и т.д.);

3.воспроизведение и передача генетической информации при делении клетки.

Обычно в клетке есть только одно ядро, однако встречаются многоядерные клетки.

Форма ядер в разных клетках различна: чаще форма ядра – сферическая (особенно в клетках округлой или кубической формы), но встречаются клетки с бобовидным, палочковидным, многолопастным, сегментовидным ядром. Чаще всего форма ядра соответствует форме клетки.

В ядре неделящейся (интерфазной) клетки выявляются следующие компоненты: ядерная оболочка (кариолемма), хроматин, ядрышко и кариоплазма.

Ядерная оболочка (кариолемма, нуклеолемма) на светооптическом уровне практически не определяется. Под электронном микроскопом обнаруживается, что она состоит из двух мембран – наружной и внутренней мембран, разделенных полостью шириной 15-40 нм – перинуклеарной цистерной.

Наружная мембрана составляет единое целое с мембранами грЭПС: на её поверхности имеются рибосомы, а перинуклеарная цистерна сообщается с цистерной грЭПС.

Внутренняя мембрана – гладкая, её интегральные белки связаны со слоем, состоящим из сети промежуточных филаментов (ламинов), - так называемой ламиной, или ядерной пластинкой. Ламина играет большую роль в поддержании формы ядра, укладке хроматина и структурной организации поровых комплексов.

В определенных точках наружная и внутренняя мембрана смыкаются, образуя ядерные поры.

Ядерная пора образована двумя параллельными кольцами диаметром 80 нм, содержащих по 8 белковых гранул, от которых к центру поры тянутся фибриллы, формирующие диафрагму толщиной около 5 нм. В середине диафрагмы лежит центральная гранула. Белковые гранулы ядерной поры структурно связаны с белками ядерной ламины. Совокупность компонентов, входящих в состав ядерной поры, называется комплексом ядерной поры.

Хроматин в интерфазной (неделящейся) клетке соответствует хромосомам и состоит из комплекса ДНК и белка. Выраженность спирализации каждой из хромосом неодинакова по длине. Соответственно, различают два вида хроматина: эухроматин и гетерохроматин.

Эухроматин соответствует участкам хромосом, которые деспирализованы и открыты для транскрипции . Эти участки не окрашиваются и не видны в световой микроскоп.

Гетерохроматин соответствует конденсированным сегментам хромосом, что делает их недоступными для транскрипции . Гетерохроматин интенсивно окрашивается основными красителями, и в световом микроскопе имеет вид мелких гранул и глыбок.

Половой хроматин (тельце Барра) – скопление гетерохроматина, соответствующее одной из пары Х-хромосом, которая в интерфазе плотно скручена и неактивна. Выявление полового хроматина используется как диагностический тест для определения генетического женского пола, что существенно при изучении генетических аномалий и, особенно, в спортивной медицине. Обычно анализируют эпителиальные клетки слизистой оболочки полости рта, где, как и в большинстве других клеток, половой хроматин выявляется как крупная глыбка гетерохроматина, лежащая рядом с ядерной оболочки. В нейтрофильных лейкоцитах крови половой хроматин имеет вид маленькой добавочной дольки ядра («барабанной палочки»).

Упаковка хроматина в ядре. В деконденсированном состоянии длина одной молекулы (двойной спирали) ДНК, образующей одну хромосому, составляет около 5 см, а общая длина молекул ДНК в ядре – более 2 м. Такие длинные нити ДНК компактно и упорядоченно упакованы в ядре диаметром всего 5-10 мкм. Компактная упаковка молекул ДНК осуществляется благодаря связи ДНК со специальными основными белками – гистонами.

Начальный уровень упаковки хроматина – нуклеосома с диаметром 11 нм. Нуклеосома состоит из блока, образованного комплексом из 8 молекул гистонов, на который намотана двойная нить ДНК (цепочка из 166 пар нуклеотидов). Нуклеосомы разделены короткими участками свободной ДНК (48 пар оснований). Нуклеосомная нить имеет вид нитки с бусинами, где каждая бусина – нуклеосома. Второй уровень упаковки также обусловлен гистонами и приводит к скручиванию нуклеосомной нити (виток из 6 нуклеосом) с формированием хроматиновой фибриллы диаметром 30 нм. Хроматиновые фибриллы образуют петли диаметром 300 нм. При делении клетки в результате еще более компактной укладки и сверхспирализации ДНК появляются хромосомы (диаметр 700 нм), видимые под световым микроскопом. Компактная упаковка ДНК в ядре обеспечивает упорядоченное расположение очень длинных молекул ДНК в небольшом объеме ядра, а также функциональный контроль активности генов.

Кроме гистоновых белков ДНК связана с негистоновыми белками, которые регулируют активность генов.

Ядрышко выявляется в интерфазном ядре на светооптическом уровне как мелкая (~ 1 мкм в диаметре), плотная сферическая структура, интенсивно окрашивающееся основными красителями. В электронном микроскопе можно различить три компонента, их которых состоит ядрышко:

1. Аморфный компонент, слабо окрашиваемый, представляет собой участки расположения ядрышковых организаторов: крупные петли ДНК, активно участвующих в транскрипции рибосомальной РНК;

2. Фибриллярный компонент состоит из множества нитей диаметром 5-8 нм, преимущественно во внутренней части ядрышка, и представляет собой длинные молекулы рРНК (первичные транскрипты);

3. Гранулярный компонент образован скоплением плотных мелких гранулярных частиц, представляющие собой зреющие субъединицы рибосом. Рибосомальные субъединицы образуется из рРНК, синтезированной в ядрышке, и белков, синтезированных в цитоплазме. Затем субъединицы рибосом транспортируются через ядерные поры в цитоплазму.

Фибриллярный и гранулярный компоненты ядрышка образуют ядрышковую нить – нуклеолонему, которая образует петлистую сеть, выделяющуюся большой плотностью на фоне менее плотного ядерного матрикса. Обычно ядрышко окружено гетерохроматином (перинуклеолярным хроматином).

Ядерный матрикс

Ядерный матрикс – компонент ядра, в котором располагаются хроматин и ядрышко. Ядерный матрикс образован кариоплазмой и кариоскелетом. Кариоплазма – жидкий компонент ядра, содержащий РНК, ионы, ферменты, метаболиты, растворенные в воде. Кариоскелет состоит из ламины и других фибриллярных белков.

КЛЕТОЧНЫЙ ЦИКЛ

Клеточный цикл – совокупность процессов, происходящих в клетке между двумя последовательными делениями или между её образованием и гибелью.

Клеточный цикл включает в себя собственно митотическое деление и интерфазу – промежуток между делениями.

ИНТЕРФАЗА

Интерфаза занимает около 90% всего времени клеточного цикла и подразделяется на три периода:

1. пресинтетический или постмитотический – G 1 (от англ. gap – промежуток);

2. синтетический – S;

3. постсинтетический или премитотический - G 2.

Пресинтетический период – G 1 – характеризуется активным ростом клетки, синтезом белка и РНК, благодаря чему клетка восстанавливает необходимый набор органелл и достигает нормальных размеров. G 1 период длится от нескольких часов до нескольких дней. В течение этого периода синтезируются особые «запускающие» белки – активаторы S периода. Они обеспечивают достижение клеткой точки R (точки ограничения), после которого она вступает в S-период. Если клетка не достигает точки R, она выходит из цикла и вступает в период репродуктивного покоя (G 0). Клетки некоторых тканей под влиянием определенных факторов способны возвращаться из периода G 0 в клеточный цикл, клетки других тканей утрачивают эту способность по мере дифференцировки. Абсолютное большинство дифференцированных клеток организма, выполняющих свои специфические функции, не делятся.

Синтетический период –S- характеризуется репликацией (удвоением содержания) ДНК, синтезом гистонов и других белков. В результате происходит удвоение числа хромосом. Одновременно удваивается число центриолей. S-период длится у большинства клеток 8-12 часов.

Постсинтетический период – G 2 - длится 2-4 часа и продолжается вплоть до митоза. В течение этого периода запасается энергия, и синтезируются белки, в частности тубулины, необходимые для процесса деления.

Митоз (кариокинез) является универсальных механизмом деления соматических клеток. Во время митоза родительская клетка делится, и каждая из дочерних клеток получает набор хромосом идентичный родительскому, и, таким образом, происходит равномерное распределение генетического материала. Продолжительность митоза – 1-3 часа.

Митоз включает 4 основные фазы: профазу, метафазу, анафазу и телофазу.

Профаза начинается с конденсации хромосом, которые становятся видимыми в световой микроскоп как нитевидные структуры. Каждая хромосома состоит из двух параллельно лежащих сестринских хроматид, связанных в области центромеры. Ядерная оболочка распадается на мембранные пузырьки и исчезает к концу профазы, так же как и ядрышко. Кариоплазма смешивается с цитоплазмой. Пары центриолей расходятся к противоположным полюсам клетки и дают начало микротрубочкам митотического (ахроматинового) веретена. В области центромеры образуются особые белковые комплексы – кинетохоры, к которым прикрепляются некоторые микротрубочки веретена (кинетохорные микротрубочки). Остальные микротрубочки веретена называются полюсными, так как они протягиваются от одного полюса клетки к другому. Микротрубочки вне веретена деления, расходящиеся радиально от клеточных центров к плазмолемме, называются микротрубочки сияния (астральные лучи).

В метафазе хромосомы выстраиваются в области экватора митотического веретена (в равной удаленности от центриолей противоположных полюсов), и образуют картину экваториальной (метафазной) пластинки (вид сбоку) или материнской звезды (вид со сторону полюсов). Сестринские хроматиды к концу этой фазы разделяются щелью, однако удерживаются в области центромеры.

Анафаза начинается с синхронного расщепления всех хромосом на сестринские хроматиды (в области центромеры) и движения дочерних хромосом к противоположным полюсам клеток, происходящего вдоль микротрубочек. Анафаза завершается скоплением на полюсах клетки двух идентичных наборов хромосом, которые образуют картину звезд (стадия дочерних звезд). В конце анафазы начинает образовываться клеточная перетяжка, благодаря сокращению актиновых микрофиламентов, концентрирующихся по окружности клетки.

Телофаза характеризуется реконструкцией ядер дочерних клеток и завершением их разделения. Ядерная оболочка восстанавливается, хромосомы постепенно деспирализуются, замещаясь картиной хроматина интерфазного ядра, а в конце телофазы вновь появляется ядрышко. Углубление клеточной перетяжки завершается полной цитотомией с формированием двух дочерних клеток. При этом происходит распределение органелл между дочерними клетками.

При повреждении митотического аппарата могут возникнуть атипические митозы, характеризующиеся неравномерным распределением генетического материала между клетками – анэуплоидией.

Форма ядра различных клеток неодинакова: встречаются клетки с округлым, овальным, бобовидным, палочковидным, многолопастным, сегментированным ядром. Чаще всего форма ядра в целом соответствует форме клетки: оно обычно сферическое в клетках округлой или кубической формы, вытянутое или эллипсоидное в призматических клетках, уплощенное в плоских. Расположение ядра варьирует в разных клетках, оно может лежать в центре (в клетках округлой, плоской, кубической или вытянутой формы), у ее базального полюса (в клетках призматической формы) или на периферии (жировые клетки). Величина ядра в среднем 5-10 мкм, и она относительно постоянна для каждого типа клеток, однако может меняться в определенных пределах, увеличиваясь при увеличении функциональной активности клетки и уменьшаясь при ее угнетении. В разных видах клеток наблюдается неодинаковое соотношение ядра и цитоплазмы . Так, например, в клетках ядерного типа - крупное ядро и узкий ободок цитоплазмы (лимфоцит), в клетках цитоплазматического типа объем цитоплазмы превосходит объем ядра (н-р, бокаловидные клетки).

Компоненты ядра. Кариолемма - или ядерная оболочка, хроматин, ядрышко и кариоплазма (ядерный матрикс или ядерный сок).

Функции ядра:

1. хранение генетической информации (в молекулах ДНК, находящихся в хромосомах)

2. реализация генетической информации, контролирующей осуществление разнообразных процессов в клетке - от синтетических до запрограммированной гибели (апоптоз)

3. воспроизведение и передачу генетической информации (при делении клетки)

Ядерная оболочка - на светооптическом уровне практически не определяется, под электронным микроскопом обнаруживается, что она состоит из двух мембран - наружной и внутренней разделенных полостью шириной 15-40 нм (перинуклеарным пространством). Наружная - покрыта рибосомами и тесно связана с гр. ЭПС. Нередко можно видеть, как наружная мембрана продолжается в канальцы гр. ЭПС. Внутренняя мембрана является местом прикрепления хромосом. В нуклеолемме имеются ядерные поры. В их состав входят поровые комплексы, в составе которых имеются: отверстие поры диаметром около 90 нм, гранулы поры и мембрана поры. Отверстие поры образуется в результате слияния наружной и внутренней мембран. Гранулы поры располагаются в 3 ряда, по 8 гранул в каждом ряду. Размеры гранул около 25 нм. От гранул к центру сходятся фибриллы, формирующие диафрагму, в середине которой лежит центральная гранула (по некоторым представлениям - это транспортируемая через пору субъединица рибосомы.

Функции комплекса ядерной поры:

1. Обеспечение регуляции избирательного транспорта веществ между цитоплазмой и ядром.


2. Активный перенос в ядро некоторых белков, имеющих особую маркировку и распознаваемой рецепторами в комплексе поры.

3. Перенос в цитоплазму субъединиц рибосом.

Чем больше пор в нуклеолемме, тем активнее ядро, если активность снижена, то количество пор уменьшается, если синтетическая активность ядра близка к нулю, то поры в ядре отсутствуют (н-р, в кариолемме ядра сперматозоида).

Хроматин занимает основную часть объёма ядра. Он представлен тёмными (электроноплотными) глыбками - т.н. гетерохроматином (функционально неактивные отделы и целые хромосомы, которые конденсированы, образуя глыбки) и светлыми (электронопрозрачными) областями -эухроматином это функционально активные, участвующие в транскрипции части хромосом, которые находятся в деконденсированном (диффузном) состоянии. Причём, глыбки гетерохроматина находятся, главным образом, на периферии ядра
и прилежат к ядерной оболочке. При изменении состояния клетки или в процессе дифференцировки возможен переход части гетерохроматина в эухроматин и обратно. Таким образом, чем больше в ядре доля гетерохроматина, тем ниже функциональная активность ядра, т.е. тем меньше скорость синтеза РНК. Так, в ядре нервной клетки гетерохроматина очень мало - ядро и клетка в целом функционально очень активны. Напротив, в лимфоците наблюдается преобладание гетерохроматина. Это вполне коррелирует с очень малым объёмом цитоплазмы, которая к тому же бедна органеллами. Данная клетка циркулирует в крови, и процессы синтеза РНК и белков идут в ней с небольшой скоростью. Хроматин дает положительную реакцию на ДНК (реакция Фельгена) - ДНК окрашивается в вишневый цвет, а все прочие структуры в зеленый, также по методу Браше хроматин окрашивается метиловым зеленым в соответствующий цвет красителя. Весь хроматин в целом - это совокупность 46 хромосом. Каждая из них представляет собой нуклеопротеидный комплекс - двуцепочечную молекулу ДНК, которая определённым образом связана с ядерными белками. Содержание белков в хромосоме по массе в 1,3-1,7 раза больше, чем ДНК. Кроме того, в хромосоме обнаруживается и РНК, являющаяся продуктом транскрипции. Тарнскрипция сопровождается экспрессией рибосомных и нерибосомных генов. Ген - единица наследственной информации, состоящий из нуклеотидов.

Экспрессия нерибосомных генов:

1. Сопровождается синтезом гигантской молекулы гетерогенной и-РНК при участии катализатора ДНК-полимеразы

2. Гигантская и-РНК подвергается сплайсингу, в результате длина гигантской и-РНК укорачивается в 10-30 раз и она превращается в и-РНК.

3. и-РНК взаимодействует с белками и образует РНК-азную гранулу (интерхроматиновая гранула диаметром 30 нм).

4. Перемещаясь на перпиферию ядра интерхроматиновая гранула перезревает в перихроматиновую гранулу диаметром 45 нм.

5. Перихроматиновая гранула покидает ядро в форме информосом.

Одним из компонентов гетерохроматина может быть т.н. половой хроматин .

У мужчин в наборе хромосом каждой клетки содержатся, как известно, по одной Х- и Y-половой хромосоме. Обе они находятся в деконденсированном состоянии, т.е. входят во фракцию эухроматина. У женщин в клетках содержатся по две Х-хромосомы. Одна из них деконденсирована. Вторая же Х-хромосома всегда находится в конденсированном состоянии , образуя в ядре компактное тельце - половой хроматин. Для обнаружения полового хроматина обычно исследуют мазок крови. В нейтрофильных лейкоцитах женщин половой хроматин выявляется в виде барабанной палочки, находящейся в одном из сегментов ядра. По этому признаку в судебной медицине отличают кровь женщин от крови мужчин. В деконденсированном состоянии длина одной молекулы ДНК равна в среднем около 5 см, а общая длина молекулы ДНК всех хромосом в ядре более 2м. В этой связи очевидна необходимость компактной упаковки молекул ДНК.

Выделяют 4 уровня компактизации ДНК:

1. Нуклеосомный (длина уменьшается в 6-7 раз). Нуклеосома - это белковая частица, состоящая из основных белков - гистонов. Основа каждойнуклеосомы- глобула из 8 молекул гистонов (октамер). Двуцепочечная молекула ДНК последовательно "намотана" на огромное количество таких глобул, делая вокруг каждой из них почти по 2 оборота (1,75 раз). В участках между глобулами с ДНК связано ещё по 1 молекуле гистона. В итоге, совокупность нуклеосом выглядит как цепь бусин, а деконденсированный хроматин имеет гранулярную структуру.

2. Нуклеомерный (компактизация в 40 раз). Формируется суперспираль. Ее витки образуют нуклеосомы обвитые ДНК. Каждый виток суперспирали образован 6-ю нуклеосомами и называется нуклеомерой, ее диаметр 25-30 нм. Суперспираль - это элементарная нить эухроматина. Гетерохроматин и полностью конденсированные хромосомы тоже имеют нуклеосомную организацию. Однако здесь добавляются и следующие уровни укладки хромосомы , что приводит к резкому сокращению её длины.

3. Хромомерный (компактизация в 680 раз). Негистоновые белки сшивают

суперспираль в боковые петельные домены, с образованием хромомеры.

4. Хромонемный - связывают со сближением хромомеров, боковые петли переплетаются и образуют кластеры, которые формируют хромонему. Их диаметр от 300 нм. Кластер рассматривают, как компонент гетерохроматина, видимый в световой микроскоп, как глыбка.

5. Хроматидный у ровень компактизации образуется только при делении клетки, в результате образуются митотические хромосомы, видимые в световой микроскоп. Во время деления ДНК редуплицируется, каждая дочерняя хромосома, называемая хроматидой связана в области первичной перетяжки (центромеры), она делит хроматиду на два плеча. Каждая хроматида образуется путем закручивания в спираль хромонемы. Виток спирали имеет диаметр 700 нм и содержит 18-20 хромомер.

Совокупность числа, размеров и особенностей строения хромосом называется кариотипом . Оценка кариотипа производится путем изучения хромосом в метафазной пластинке. Для кариотипирования получают культуру клеток, в которую вводят колхицин, блокирующий формирование веретена. Из таких клеток извлекают хромосомы, которые далее окрашивают и идентифицируют. Нормальный кариотип человека представлен 46 хромосомами - 22 пары аутосом и двумя половыми хромосомами. Кариотипорование позволяет диагносцировать ряд заболеваний, связанных с хромосомными аномалиями, в частности синдром Дауна - трисомия 21 хромосомы.

Ядрышко - это место образования рибосом в клетке. Оно образовано специализированными участками хромосом, которые называются ядрышковыми организаторами. У человека такие участки имеются в пяти хромосомах - 13, 14, 15, 21 и 22, где находятся многочисленные копии генов, кодирующих рибосомальные РНК. Ядрышко выявляется в интерфазном ядре на светооптическом уровне как мелкая плотная гранула, интенсивно окрашивающаяся основными красителями. При окраске по методу Браше дает + реакцию на РНК - окрашивается пиронином в розовый цвет. Оно располагается в центре ядра или эксцентрично. Размеры и число ядрышек увеличиваются при повышении функциональной активности клетки. Особенно крупные ядрышки характерны для эмбриональных и активно синтезирующих белки клеток, а также клеток быстро растущих злокачественных опухолей. Под электронным микроскопом в ядрышке обнаруживают 3 компонента.

1. центральный фибриллярный светлый компонент - окрашивается бледно, где находится ДНК ядрышкового организатора, содержащей информацию о р-РНК.

2. периферический фибриллярный компонент - в виде тонких нитей и представляет собой транскрипты р-РНК.

3 гранулярный компонент - субъединицы рибосом.

Кариоплазма - жидкий компонент ядра, в котором располагаются хроматин и ядрышко. Содержит воду и ряд растворенных и взвешенных в ней веществ: РНК, гликопротеины, ионы, ферменты, метаболиты. Некоторые авторы разделяют понятие кариоплазмы и ядерного матрикса, к последнему помимо кариоплазмы относят также и кариоскелет, состоящий из ядерной ламины и фибриллярной сети, пронизывающей ядро. Ламина это пластинка белковой природы, которая связана с внутренней мембраной. К ядерной ламине и внутриядерной фибриллярной сети крепятся хромосомы, а также
разнообразные белковые комплексы с ферментативной или регуляторной функцией.

Клеточный цикл - это время существования клетки от одного деления до другого, или от деления до гибели. Клеточный цикл включает собственно митотическое деление и интерфазу - промежуток между делениями. Интерфаза значительно более длительна, чем митоз (обычно занимает не менее 90% клеточного цикла) и подразделяется на 3 периода: пресинтетический или постмитотический (G1), синтетический (S) и постсинтетический или премитотический (G2).

G1 - наступает сразу после митоза и характеризуется активным ростом клетки и синтезом белка и РНК, благодаря чему клетка достигает нормальных размеров и восстанавливает необходимый набор органелл (продолжительность от неск часов до неск дней)

S - характеризуется удвоением (репликацией) ДНК и синтезом белков, в частности гистонов, которые поступают в ядро и обеспечивают нуклеосомную упаковку ДНК. Одновременно удваивается число центриолей. Этот период у большинства клеток длится 8-12 часов.

G2 - В течение этого периода клетка осуществляет непосредственную подготовку к делению. Происходит созревание центриолей, запасается энергия, синтезируется РНК и белки (в частности тубулины, необходимые для образования веретена деления). Продолжительность 2-4 часа. Некоторые клетки могут выходить из клеточного цикла, это обозначается буквой G0. Клетка, вошедшая в этот период, утрачивает способность к митозу. В том случае, если клетка временно утрачивает способность к делению, она подвергается начальной дифференцировке. При этом дифференцированная клетка специализируется для выполнения определенной функции, после чего она способна вновь возвратиться в клеточный цикл. Н-р, при повреждении печени гепатоциты, подвергшиеся начальной дифференцировке, возвращаются в клеточный цикл, и за счет их деления происходит быстрое восстановление ткани. Те клетки, которые окончательно утрачивают способность к делению, не могут возвратиться в клеточный цикл и погибают. Н-р, гранулоциты крови, подвергшиеся дифференцировке, функционируют в течение 8 суток, а затем погибают. Также высокоспециализированные клетки - кардиомиоциты или нервные клетки не способны делиться.

Митоз - непрямое деление. В процессе, которого происходит равномерное распределение хромосомного материала между дочерними клетками. Выделяют 4 фазы, общая продолжительность которых 2 часа. Профаза - 30-60 мин, метафаза 10-20 мин, анафаза - 2-3 мин, телофаза - 30-40 мин.

Мейоз - это такое деление, при котором в дочерних клетках оказывается половинный (гаплоидный) набор хромосом. Такое деление имеет место при образовании половых клеток. Особенности мейоза: состоит из 2-х делений, второе деление без S-периода в интерфазе, 80% времени занимает профаза первого деления. В ней выделяют периоды: 1. Лептотена - х ромосомы спирализуются и приобретают вид тонких нитей. 2. Зиготена - г омологичные хромосомы конъюгируют друг с другом.Пахитена - пары хромосом ещё больше спирализуются и, утолщаясь, укорачиваются. Хромосомы обмениваются гомологичными участками (кроссинговер ).Вместе с тем активируются синтезы РНК и белка. Благодаря этому, сильно увеличивается объём ядра и клетки. Диплотена - г омологичные хромосомы начинают расходиться. Но между ними сохраняются хиазмы - перекрёсты в местах происшедшего кроссинговера. Из-за ещё большей спирализации хромосомы утолщаются и подразделяются на хроматиды. Поэтому каждая пара гомологичных хромосом выглядит как тетрада. Диакинез - х иазмы исчезают из-за ещё большего расхождения гомологичных хромосом.

Амитоз - этот тип деления характеризуется тем, что хромосомный материал ядра материнской клетки может распределяться неравномерно между дочерними клетками. Такой тип деления считается ненормальным.

Полиплоидия - это процесс увеличения количества хромосом в ядре клетки. В результате образуются полиплоидные клетки. Это может происходить в результате блокирования одной из фаз митоза, либо нарушения цитотомии во время телофазы. Н-р, гепатоциты, мегакариоциты красного костного мозга, гландулоциты ацинусов слюнных желез.

Эндорепродукция - это последовательное многократное удвоение ДНК, в результате увеличивается набор хромосом, при этом хромосомы связаны тонкими нитями, эти структуры называются политенами. Характерными для клеток плаценты.

Как правило, эукариотическая клетка имеет одно ядро , но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра - сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра - обычно от 3 до 10 мкм.

Строение ядра:
1 - наруж­ная мембрана; 2 - внут­ренняя мемб­рана; 3 - поры; 4 - ядрышко; 5 - гетеро­хроматин; 6 - эухро­матин.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами - узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма (ядерный сок, нуклеоплазма) - внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.

Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин - внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин - генетически активные, гетерохроматин - генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин - форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Яндекс.ДиректВсе объявления

Хромосомы

Хромосомы - это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин - различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но еще петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 - метацентрическая; 2 - субметацентрическая; 3, 4 - акроцентрические. Строение хромосомы: 5 - центромера; 6 - вторичная перетяжка; 7 - спутник; 8 - хроматиды; 9 - теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник - участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной - 2n) набор хромосом, половые клетки - гаплоидный (одинарный - n). Диплоидный набор аскариды равен 2, дрозофилы - 8, шимпанзе - 48, речного рака - 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными .

Кариотип - совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма - графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида - одинаковые. Аутосомы - хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы - хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары аутосом и 1 пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

Половые хромосомы не относятся ни к одной из групп и не имеют номера. Половые хромосомы женщины - ХХ, мужчины - ХУ. Х-хромосома - средняя субметацентрическая, У-хромосома - мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими .

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

Лекция №9.
Строение прокариотической клетки. Вирусы

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты - одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.