Синильная кислота или какая кислота самая ядовитая? Чем опасно воздействие синильной кислоты на человека? Синильная кислота легче или тяжелее воздуха.

Химические названия : цианистый водород; цианистово­дородная кислота; синильная кислота.

Условные названия и шифры : АС (США); VN (Великобритания); Forestlte (Франция).

Синильная кислота впервые получена в 1782 г. К. Шееле (Шве­ция). В качестве отравляющего вещества впервые она была приме­нена в 1916 г. французскими войсками. Всего до конца первой миро­вой войны французская армия применила около 4 тыс. т синильной кислоты, но ожидаемого боевого эффекта не достигла из-за несовер­шенства средств применения. Безуспешным было и применение так­тических смесей на ее основе: французских венсенита (50% HCN , 30% AsCl 3 , 15% SnCI и 5% СНС l 3 ) и манганита (50% HCN и 50% AsCI 3 ), британской смеси IL ( HCN — СНС l 3 , 1: 1) и смесей синиль­ной кислоты с хлорцианом.

К началу второй мировой войны в ряде иностранных армий были разработаны более совершенные средства боевого применения этого ОВ, позволяющие создавать в приземном слое атмосферы концентрации пара синильной кислоты, которые могут вызвать ги­бель незащищенной живой силы в течение нескольких секунд. Усо­вершенствование противогазов, а также появление фосфорорганических ОВ снизили военное значение синильной кислоты. Тем не менее ее и в настоящее время следует относить к потенциальным боевым отравляющим веществам в связи с широкомасштабным производст­вом во всех индустриально развитых странах для мирных целей.


Основными областями потребления синильной кислоты являются производства метакрилатов, перерабатываемых в так называемое органическое стекло, акрилонитрила (исходного вещества для син­теза бутадиен-нитрильных каучуков и выработки волокна орлон или нитрон), цианидов, потребляемых промышленностью пестицидов (гербицидов и средств борьбы с вредителями сельского хозяйства). Все более возрастающее количество синильной кислоты перерабаты­вается в аминокислоты, детергенты, комплексообразователи для ме­таллургической промышленности. Сама синильная кислота исполь­зуется как фумигант для окуривания цитрусовых и оливковых деревьев, а также для уничтожения насекомых и грызунов в зерно­хранилищах, на железнодорожных складах, на морских судах. Ежегодное производство синильной кислоты в капиталистических странах превышает 300 тыс. т, из них приблизительно 200 тыс. т приходится на США.

В вооруженных силах США синильной кислотой были снаряжены 1000-фн авиационные химические бомбы взрывного принципа дейст­вия, относящиеся по табельности к группе С. Они кодируются одним зеленым кольцом и маркируются надписью «АС GAS ».

Токсические свойства

Синильная кислота поражает организм при вдыхании ее пара, при приеме с водой и продуктами питания, путем резорбции через кожу, при попадании в кровь через раневые поверхности. Наибольшую опасность представляет вдыхание пара АС.

Тяжесть поражения при ингаляции в сильной степени зависит от концентрации и времени воздействия ОВ. Концентрация АС около 0,02 мг/л переносится организмом без последствий даже при 6-часовой экспозиции. При концентрации 0,04—0,05 мг/л и времени действия более часа возможны отравления легкой степени, признаками которых является ощущение запаха горького миндаля, металлический привкус во рту, царапание в горле. В последующем появляются головокружение, головная боль, нарушение координации движений.

При концентрации 0,12—0,15 мг/л и экспозиции 30— 60 мин возникают отравления средней степени. К названным симптомам прибавляются ярко-розовая окраска слизистых оболочек и кожи лица, тошнота, рвота, учащение дыхания, боль и чувство стеснения в груди. Нарастает общая слабость, сознание угнетено, пораженный падает. На фоне поверхностного дыхания у него наблюдаются замедление сердцебиений и напряжение пульса, расширение зрачков глаз.

Тяжелые отравления (вдыхание в течение 5—10 мин воздуха с концентрацией ОВ 0,25—0,4 мг/л) сопровождаются судорогами с полной потерей сознания, сердечной аритмией, непроизвольной дефекацией. Затем развивается паралич, дыхание становится все реже и полностью останавливается. Деятельность сердца может продолжаться еще в течение 5—8 мин. Концентрации 0,42—0,5 мг/л уже при экспозиции 2—5 мин вызывают быструю смерть, а при более высоких концентрациях происходит молниеносное отравление: пораженный падает, теряет сознание и спустя несколько минут погибает.

Синильная кислота обладает кожно-резорбтивным действием в парообразном состоянии. Пребывание в течение 5—10 мин с надетым противогазом в зараженной атмосфере с концентрацией АС 0,7—1,2 мг/л или длительное пребывание при концентрации 0,5 мг/л опасно для жизни. Особенно опасно попадание на кожу жидкого ОВ.

Пероральная токсодоза АС для человека LD50 1 мг/кг, что соответствует дозам 1,8 мг/кг для цианистого натрия и 2,4 мг/кг — для цианистого калия. Возможны хронические отравления синильной кислотой, особенно лиц, связанных с получением, переработкой и использованием различных цианидов. Подобные отравления характеризуются потливостью рук, головокружением и головными болями, тошнотой, изжогой, общей слабостью. Нередки нарушения работы желудочно-кишечного тракта. Отмечаются также параличи и ослабление интеллекта.

Для обезвреживания АС возможно использование веществ, легко реагирующих с ним с образованием неядовитых продуктов: коллоидную серу и тиосульфат натрия, превращающие цианиды в нетоксичную роданистоводородную кислоту.

Скорость этих реакций невысока, поэтому лучше применять серосодержащие вещества в сочетании с другими антидотами.

В качестве профилактических и лечебных средств при отравлениях АС и цианидами используют некоторые альдегиды и кетоны, легко присоединяющие синильную кислоту к своим карбонильным группам. Наиболее известны среди них глюкоза и диоксиацетон

Физические свойства

Синильная кислота представляет собой бесцветную, прозрачную и очень подвижную жидкость со своеобразным запахом, в малых концентрациях напоминающим запах горького миндаля. Плотность жидкого ОВ при температуре 20°С 0,6894 г/см 3 , плотность пара по воздуху 0,947.

Синильная кислота во всех соотношениях смешивается с водой и растворяется в большинстве органических растворителей, за исключением перфторуглеводородов и минеральных масел.

Температура кипения 25,7° С, давление насыщенного пара 612 мм рт. ст. при температуре 20°С, максимальная концентрация при этой температуре 873 мг/л. При минус 13,3° С безводная синильная кислота затвердевает.

Парообразная синильная кислота легко сорбируется резинотехническими изделиями, шерстяными, текстильными и кожаными материалами, соломой, при этом масса поглощенного ОВ составляет 0,013—0,1% от массы пористого материала. При проветривании десорбируется лишь около 75% поглощенной синильной кислоты. Соединение легко проникает в пористые строительные материалы, изделия из дерева, через неповрежденную яичную скорлупу, адсорбируется многими пищевыми продуктами.

Защита от АС

Современный фильтрующий противогаз надежно защищает органы дыхания от воздействия АС. При длительном пребывании в атмосфере, зараженной АС, особенно в закрытых помещениях, где могут быть созданы высокие концентрации вещества, необходимо пользоваться защитной одеждой.

При поражении АС следует применить антидот, например амилнитрит. Раздавленную ампулу с антидотом быстро вводят под лицевую часть противогаза, при необходимости делают искусственное дыхание. Следует помнить, что при вдыхании содержимого одной ампулы антидота до 20% гемоглобина крови превращается в метгемоглобин, не участвующий в переносе кислорода от легких к тканям. Поэтому при оказании первой помощи пораженному рекомендуется использовать не более двух ампул с амилнитритом.

В лечебных учреждениях дополнительно к амилнитриту внутривенно вводят метиленовую синь в физиологическом растворе или в растворе глюкозы, 25—30% раствор тиосульфата натрия, диоксиацетон. Комплексная антидотная терапия позволяет снять токсическое действие не менее десяти смертельных доз АС.

Пораженным синильной кислотой показаны кислородотерапия, способствующая окислению ОВ, и средства, стимулирующие сердечную деятельность, типа камфоры, адреналина, кофеина, кардиазола. Синильную кислоту, попавшую на кожу, смывают 2% раствором соды или водой с мылом.


Для дегазации АС пригодны водные суспензии, приготовленные из 20% едкого натра и 10% раствора железного купороса (1:2 по объему). Можно обработать АС щелочью, но образующийся при этом токсичный цианистый натрий целесообразно смешать с избытком окислителя, например 10% КМ g О 4 .

Источники:

Александров В. Н., Емельянов В. И. «Отравляющие вещества» М. Воениздат 1990

Отравление цианидами происходит редко, но, как говорится, метко. Вещество проникает в дыхательные пути вместе с дымом жилых или промышленных пожаров, в кровь во время лечения нитропруссидом натрия, в результате длительного потребления употребление загрязненных продуктов или воды. Ранее яд применялся в качестве боевых отравляющих веществ типа СS, потому сейчас «всплывает» во время терактов.

Что такое цианиды?

Цианиды существует в газообразной, жидкой и твердой формах, но чаще встречаются в виде кристаллов солей:

  • Цианистоводородная или синильная кислота представляет собой летучую жидкость, температура кипения которой составляет 25,6 градуса по Цельсию. Плотность у синильной кислоты равна воздуху. Бесцветная жидкость имеет запах горького миндаля и является идеальным ядом, который вызывает смерть при попадании в организм в дозе 1 мг на килограмм веса человека;
  • Цианид калия и соли натрия растворяются в воде, а ртутные, медные, золотые – растворимы плохо;
  • Существуют вещества, такие как хлорциан и циан бромистый, которые выделяют цианид в процессе цианистоводородного метаболизма. По характеристике это газы с мощным раздражающим легкие действием.

Использование цианистого водорода

  1. Нитрилы часто применяются в качестве растворителей в производстве пластмасс. В процессе горения выделяется синильная кислота, которая также метаболизируется после всасывания в слизистые желудочно-кишечного тракта.
  2. Цианистый водород применяется для уничтожения сусликов в сельском хозяйстве на полях.
  3. Сердечный препарат нитропруссид способен вызвать ятрогенные отравления при внутривенном вливании в дозах более 10 мкг на килограмм массы тела в минуту.
  4. Применяется при проявлении фотографий, при производстве фумигаторов и пестицидов, при добыче золота и серебра, проведении химических анализов.
  5. Вещество лаэтрил, которое содержится в амигдалине, используется как средство против раковых клеток. Побочным эффектом является интоксикация цианидом.
  6. Некоторые жидкости для снятия лака и растворители могут выделять ядовитые пары.
  7. в изготовлении шерсти и шелка используются продукты сгорания синильной кислоты.
  8. В меламиновой посуде и акрилонитриле в пластиковых стаканчиках, пенополиуретане в мебели и подушках находятся смертельные концентрации цианида, которые выделяются в процессе горения при соответствующих температурных условиях и воздействии кислорода.
  9. Во время промышленных аварий хлорциан вступает в контакт с водой при тушении огня, а контейнеры с ним могут взрываться под воздействием высокой температуры.
  10. Сигаретный дым – самый распространенный источник отравления синильной кислотой. У курильщиков концентрация вещества в крови повышена в 2,5 раза.

Вдыхание дыма – наиболее вероятный способ попадания синильной кислоты в организм. Бытовые предметы, сгорающие во время пожаров, содержат соединения, производящие цианистый водород.

Умышленное отравление синильной кислотой явление редкое и встречается в качестве метода суицида. Медицинские и лабораторные работники имеют доступ к цианистым солям в больницах и исследовательских лабораториях.

Синильная кислота в косточках фруктов

Получение синильной кислоты происходит из амигдалина, который находится в косточках абрикосов и папайи, сырых орехов, фасоли, клевера и сорго.

Синильная кислота в косточках абрикосов, горького миндаля, лавровишни, сливы, персика, груши и яблока оказывает токсическое воздействие, если долго находится в пищеварительной системе.

Наиболее распространенным продуктом, способным отравить цианидом, являются абрикосовые косточки, имеющие запах горького миндаля или бензальдегида. Ранее синильную кислоту выделяли из зеленого миндаля, а теперь она синтезируется в лабораториях.

Три сырых абрикосовых косточки превышают безопасные уровни цианистого водорода. Для ребенка даже одна косточка может быть опасной. Потребление вещества взывает тошноту, лихорадку, головные боли, бессонницу, жажду, вялость, нервозность, дискомфорт в суставах и мышцах, падение артериального давления. В экстремальных случаях приводит к летальному исходу.

Концентрация для отравления синильной кислотой составляет от 0,5 до 3,5 мг на килограмм массы тела, но кушать плоды абрикоса совершенно безопасно.

Цианид в косточках вишни вызывает опасение, поскольку дети часто проглатывают их. Особенную угрозу представляют плоды, не проходящие термообработку. Вишня и черешня в компотах и вареньях полностью теряют ядовитые качества.

Действие яда

Физические свойства обуславливают быстрое попадание вещества в кровь и распределение по всем органам и тканям. Внутри клеток цианид присоединяется к металлоферментам, в результате чего происходит блокирование цитохромоксидазы. Прекращается процесс митохондриального окислительного фосфорилирования, и, проще говоря, клетка перестает дышать даже при достаточном количестве кислорода. Клеточный метаболизм становится анаэробным, производится избыток молочной кислоты. Потому влияние на ткани, имеющие высокую потребность в кислороде (сердце и мозг), наиболее сильное.

Люди с нехваткой фермента роданазы, которая катализирует детоксикацию цианидов, склонны к атрофии зрительного нерва и слепоте. Яд негативно влияет на зрительные органы курильщиков, провоцируя табачную амблиопию.

Как распознать отравление

Признаки отравления зависят от дозы и пути попадания вещества организм. Цианид может вызывать незначительное раздражение верхних дыхательных путей, сердечно-сосудистую недостаточность и смерть за несколько минут. Только стремительная и, агрессивная терапия с поддержанием функций организма и введением антидотов спасает человека.

Симптомы отравления синильной кислотой тяжело обнаруживаются из-за того, что они являются общими:

  • слабость;
  • спутанность сознания;
  • странное поведение;
  • сонливость;
  • одышка;
  • головная боль;
  • головокружение;
  • рвота;
  • боли в животе;
  • судороги.

Внешне отравление распознается по необычному розовому или вишнево-красному оттенку кожи и быстрому дыханию. Сердцебиение становится либо ускоренным, либо замедляется, зрачки расширяются. Человека едва держат ноги. На судорожной стадии отравления случается непроизвольное выделение кала и мочи. На паралитической – пострадавший теряет сознание, рефлексы нервной системы исчезают, дыхание замедляется.

При резком попадании в тело цианид вызывает коллапс сердца. Хронические отравления дают о себе знать постепенным ухудшением самочувствия, болезненностью, болями в груди и в животе, изменениями вкуса, рвотой, тревожностью. Иногда дыхание человека имеет запах горького миндаля, хотя это тяжело обнаружить.

Неотложная помощь

Лечение отравлений происходит в отделении неотложной помощи, а тактика зависит от степени поражения организма. Отравление цианидом обратимо, особенно если удается сразу выявить причину угнетения нервной системы.

Важно, чтобы родственники, знакомые или свидетели отравления могли четко ответить на вопросы относительно бутылок, таблеток, условий – всего, что даст специалисту наводку на источник проблемы. Иногда запах – это единственный симптом.

Конечно, в медучреждении проводится анализ крови и рентген. Результатов диагностического теста для выявления цианида надо ждать несколько часов, а иногда и дней, однако лечение нужно осуществить как можно быстрее, поэтому врач будет руководствоваться именно показаниями свидетелей.

Первые меры включают:

  1. Эвакуацию пострадавших на просторную местность со свежим воздухом;
  2. Кислородную терапию, стерилизацию и дезинфекцию кожи и одежды.

Если в крови выявляется молочнокислый ацидоз, что указывает на острое поражение, пострадавшему вводят бикарбонат натрия. Антидотная терапия осуществляется на основе клинических критериев и включает:

  1. Амилнитрит, наносимый на вату, которая подносится к носу пострадавшего каждые две минуты;
  2. Тиосульфат натрия в 30%-ом растворе нужно ввести внутривенно в количестве 30-50 мл;
  3. Нитрит натрия в виде 25%-ого раствора вводится внутривенно в количестве 10 мл;

Данные компоненты образуют метгемоглобин в эритроцитах, который в сочетании с цианидом образует нетоксические комплексы. Тиосульфат натрия способствует превращению яда в нетоксичный тиоцианат.

Сегодня ученые разработали современный антидот Антициан, действующий эффективнее нитрита натрия.

При успешной и быстра транспортировке в медучреждение лечение всегда эффективно. Смерть является главным опасным итогом отравления, в то же время выжившие имеют риск развития дисфункции центральной нервной системы: синдрома Паркинсона и других моторных нарушений.

Синильная кислота (цианистый водород) - HCN - слабая бескислородная кислота, очень летучая. Она является подвижной бесцветной жидкостью со слабым запахом горького миндаля.

Кипит при температуре 25,6°. Легко растворяется в воде, спирте и эфире.

Пары синильной кислоты легче воздуха. Синильная кислота и ее соли (цианиды) - цианистый натрий (NaCN), цианистый калий (KCN), цианистый аммоний (NH4 CN) и многие другие широко применяются в различных отраслях промышленности и сельского хозяйства.

Так, цианиды используются для извлечения золота и серебра из руды для цианирования стали, при закаливании и жидкой цементации металлов, при гальваностегическом серебрении, золочении, кадмировании, цинковании и др., в производстве фармацевтических препаратов, в фотографии, литографии.

Синильная кислота и цианиды применяются для борьбы с вредителями сельского хозяйства, для уничтожения амбарных вредителей и сусликов, для дератизации (на судах), в железнодорожных вагонах, как искусственное удобрение и т. д. Следует отметить, что цианиды обычно являются нестойкими соединениями: на воздухе, особенно в присутствии влаги, они легко разлагаются с выделением синильной кислоты вследствие вытеснения ее углекислотой. Поэтому синильная кислота выделяется в виде газа при всех процессах, где применяются соли синильной кислоты, при обработке различных загрязненных цианом металлов, минералов и кислот.

В производственных условиях отравления синильной кислотой чаще всего возникают в результате вдыхания газообразного цианистого водорода, а также его солей, находящихся в состоянии аэрозоля. В производственных условиях возможно также попадание синильной кислоты и ее соединений в организм через органы пищеварения. При поступлении в желудок цианиды под влиянием синильной кислоты желудочного сока разлагаются с выделением свободной соляной кислоты, которая быстро всасывается.

Пути проникновения в организм

При наличии больших концентраций цианистого водорода в воздухе возможно проникновение его в организм не только через дыхательные пути и желудочно-кишечный тракт, но и через кожу, что также может вызвать тяжелое отравление.

Всасываемости синильной кислоты через кожу способствует высокая температура воздуха производственных помещений и тяжелое физическое напряжение, вызывающие гиперемию кожи и усиление выделения пота.

Наиболее быстро синильная кислота всасывается слизистой оболочкой дыхательных путей, а наиболее медленно - кожей.

Цианиды, попавшие в организм, в течение некоторого времени могут находиться в неизмененном состоянии в крови и органах. Вскоре они подвергаются превращениям, из которых наиболее известно превращение синильной кислоты в нетоксичные роданистые соединения путем присоединения серы. Механизм образования роданистых соединений пока не является достаточно ясным, но есть основания считать, что он связан с соединениями, содержащими сульфгидрильные группы (глютатион, цистеин).

Синильная кислота может выделяться из организма в неизмененном виде через легкие (выдыхаемый воздух имеет запах горького миндаля), слюнные и потовые железы, а также частично элиминируется в виде роданистых соединений через почки и кишечник.

Различные цианистые соединения, попадая в организм через органы дыхания, желудок, кожу, распадаются в нем с выделением свободной синильной кислоты. Таким образом, токсичность этих соединений обусловлена ядовитым действием указанной кислоты.

Высокая токсичность, свойственная синильной кислоте, объясняется сродством молекулы CN к трехвалентному железу дыхательного фермента (цитохромоксидаза) клеток. В результате происходит блокада указанного фермента, что приводит к резкому затруднению передачи кислорода клеткам и, таким образом, к непосредственному «удушению» тканей - тканевой гипоксии.

Патогенез и симптомы отравления синильной кислотой

В патогенезе развития острой интоксикации цианидами и, в частности, развития тканевой гипоксии большое значение имеет и функциональное состояние высших отделов центральной нервной системы.

Возникающее при остром отравлении синильной кислотой резкое понижение способности клеток утилизировать кислород приводит к значительному повышению содержания кислорода в венозной крови и уменьшению артериовенозной разницы по кислороду; в тяжелых случаях отравления она почти полностью исчезает. В результате венозная кровь по внешнему виду весьма напоминает артериальную. Этим объясняется розовая окраска кожи и слизистых оболочек, а также алый цвет органов у людей, погибших от отравления синильной кислотой.

Наиболее тяжелые случаи острых отравлений, возникающие в результате непосредственного действия высоких концентраций паров синильной кислоты, могут протекать молниеносно: после 2-3 глубоких вдохов возникает приступ общих судорог, нередко сопровождаемый непроизвольным криком, потеря сознания и смерть наступает через несколько минут после попадания яда от паралича дыхания, а затем и сердца (при сильно расширенных зрачках). В производственных условиях подобного рода молниеносные отравления встречаются очень редко.

Как правило, возникающие здесь случаи острых отравлений характеризуются замедленным и более вялым течением. В этих случаях острых отравлений синильной кислотой принято различать продромальную, диспноэтическую, судорожную и паралитическую стадии.

В течение первой стадии появляются ощущения царапанья в горле, чувство горечи на языке, онемение рта и зева, металлический вкус во рту, слюнотечение, общая слабость, резкая головная боль, головокружение, пошатывание, затруднение речи, тошнота, рвота, позывы на дефекацию, чувство стеснения в груди, сердцебиение, прилив крови к голове. Дыхание учащается, а затем становится более глубоким. Если пострадавший в этой стадии выйдет на свежий воздух, симптомы могут быстро исчезнуть.

При усилении явлений интоксикации развивается диспноэтическая стадия. Общая слабость нарастает, усиливаются чувство стеснения и боль в области сердца, замедляется пульс. Постепенно увеличивается одышка, принимающая мучительный характер и сопровождающаяся нарушением ритма дыхания: иногда отмечаются отдельные короткие вдохи в сочетании с длительными выдохами.

Одновременно наблюдается расширение зрачков, выпячивание глазных яблок, чувство страха, оглушенное состояние.

Судорожная стадия характеризуется появлением сильных судорог (чаще тонических), сведением жевательной мускулатуры с прикусом языка. Появляется непроизвольная дефекация и мочеиспускание, больной теряет сознание.

Во время паралитической стадии наступает полная потеря сознания, чувствительности и рефлексов, судороги прекращаются, дыхание становится все более редким, поверхностным и неправильным и, наконец, прекращается. Остановка сердца иногда происходит только спустя несколько минут после остановки дыхательных движений.

Быстрота развития интоксикации зависит от пути проникновения яда в организм. Так, при ингаляционном пути поступления синильной кислоты клиническая картина отравления развивается быстро (латентный период исчисляется минутами), а при кожном пути имеется довольно длительный латентный период - иногда от 40 минут до 1,5 часов.

Диагностика отравлений синильной кислотой и ее производными

Клиническому диагнозу острой интоксикации цианидами помогает наличие двух характерных признаков: запаха горького миндаля и розовой окраски кожи у отравленного при одновременном развитии отчетливо выраженной одышки. Наличие запаха горького миндаля исключает отравление окисью углерода. Появление розовой окраски кожи исключает интоксикацию нитробензолом (мирбановое масло), при которой также имеется запах горького миндаля изо рта, но в результате интенсивного образования метгемоглобина появляется серовато-синяя окраска кожи.

Облегчает дифференциальный диагноз обнаружение при этой интоксикации в эритроцитах телец Гейнца.

После перенесенной острой интоксикации цианидами могут развиваться стойкие и глубокие патологические изменения в центральной нервной системе.

Описаны случаи развития паркинсонизма после отравлений синильной кислотой, стойкие органические расстройства мозжечкового характера продолжительный мозжечково-спазматический синдром, возникший после комы, вызванной отравлением цианидамигемиплегия после ингаляционного отравления синильной кислотой.

До недавнего времени вопрос о хронических интоксикациях цианидами считался нерешенным и многие авторы отрицали эту возможность.

Однако исследованиями было установлено, что при наличии в воздухе промышленных предприятий цианистых соединений в пределах от нескольких десятитысячных до нескольких тысячных долей миллиграмма на 1 л создаются условия для возникновения хронической интоксикации.

Клинические наблюдения подтвердили, что под влиянием длительного воздействия малых концентраций цианистых соединений (порядка тысячных долей миллиграмма на 1 л) у людей возникают жалобы на головную боль, головокружение, ослабление памяти, отсутствие аппетита, иногда ослабление половой функции, сжимающие боли в груди, сердцебиение, одышку.

При объективном исследовании у больных были выявлены: гипотония, брадикардия, нарушения тонов сердца, прогрессирующее похудание, увеличение щитовидной железы, нарушения желудочной секреции, неустойчивость вегетативной нервной системы, тенденция к увеличению количества эритроцитов и гемоглобина, нарушения углеводного, азотистого и серного обмена.

Цианистые соединения, находящиеся в воздухе производственных помещений, при длительном воздействии вызывают нарушения окислительно-восстановительных процессов в организме рабочих, в результате чего наблюдается снижение содержания в крови глютатиона (общего и окисленного) и каталазы. Имеются указания, что при хроническом воздействии синильной кислоты в картине отравления важную роль играет угнетение продукции гормона щитовидной железы, которое, однако, вызывается не синильной кислотой, а образующимися из нее в организме роданистыми соединениями, которые не успевают выделяться с мочой и калом.

Некоторые цианиды оказывают и выраженное местное действие. Так, у лиц, соприкасающихся с растворами цианистого калия, возникают подострые и хронические экземы, иногда с глубокими изъязвлениями на пальцах (язвы с валообразными краями).

Первая помощь и лечение при отравлении синильной кислотой и другими цианидами

Эффективность первой помощи при острых отравлениях цианидами зависит от быстроты и четкой последовательности проведения необходимых мероприятий. Для прекращения дальнейшего поступления яда прежде всего следует вынести пострадавшего из зараженной атмосферы и снять с него одежду, которая может быть источником поступления яда в организм. Для освобождения дыхательного фермента (цитохромоксидазы) клеток от молекулы циана и предупреждения дальнейшего поступления этого яда из крови в ткани применяется соответствующая антидотная терапия. В первую очередь используются метгемоглобинообразователи, так как метгемоглобин содержит трехвалентное железо, к которому молекулы циана имеют большое сродство. Циркулирующий в крови метгемоглобин связывает цианистые соединения прежде чем они попадают из крови в ткани, а также способствует извлечению циана из цитохромоксидазы клеток. В результате в крови образуется цианметгемоглобин. В качестве метгемоглобинообразователей применяются вдыхание амилнитрита (по 2-3 капли с кусочка ваты, марли или с носового платка)1, внутривенное введение свежеприготовленного 1-2% раствора азотистокислого натрия (5-10 мл) или внутривенное вливание хромосмона (50 мл).

К сожалению, цианметгемоглобин является нестойким соединением. Он легко распадается, причем циан довольно быстро отщепляется. Поэтому после введения метгемоглобинообразователей рекомендуется примерно через 5 минут вводить внутривенно 20 мл 30% раствора гипосульфита натрия, который обусловливает обезвреживание цианидов путем образования роданидов, выделяющихся из организма главным образом почками. Если в ближайшее время состояние больного не улучшается, необходимо указанные выше антидоты вводить повторно в том же порядке и в той же дозировке.

Эффективность применения амилнитрита, азотистокислого натрия или их комбинаций с тиосульфатом натрия для лечения острых отравлений цианидами многократно подтверждена экспериментальными исследованиями и клиническими наблюдениями.

В литературе описаны десятки случаев, когда, применяя указанные выше препараты, удалось спасти людей, смертельно отравленных цианидами.

За последнее время для лечения острых интоксикаций цианидами был предложен ряд других препаратов. Так, описан случай острого отравления газообразной синильной кислотой, когда после безуспешного применения нитритов, метиленовой сини и тиосульфата натрия был получен хороший эффект после двукратной инъекции адренотропного гормона гипофиза (АКТГ) в дозе по 25 мг.

Экспериментальными исследованиями доказано, что для профилактики и лечения острой интоксикации цианидами могут быть использованы кортизон, витамин, комплексообразующие соединения кобальта - ЭДТА CaNa2 , роданеза и этантиосульфонат, 6,8-дитиокаприловая кислота, цистеин.

Однако действие этих препаратов, изученное в опытах на животных, не было проверено в случаях отравлений у людей.

Большое значение имеет применение средств, возбуждающих дыхательный центр (лобелии подкожно 0,01 г, внутривенно 0,003 г, цититон 1 мл подкожно или внутривенно), а также ингаляций карбогена. Эти средства не только восстанавливают дыхание, но и усиливают легочную вентиляцию, способствуя выделению синильной кислоты через легкие.

Ингаляции карбогена рационально чередовать через каждые 15-20 минут с вдыханием 100% кислорода, так как кислород, растворенный в плазме в повышенном количестве, может способствовать более энергичному окислению синильной кислоты и переводу ее в малоядовитую циановую кислоту.

Согласно экспериментальным исследованиям, вдыхание кислорода при атмосферном давлении мало изменяет течение отравления, но ингаляция его при небольшом повышении давления (25 см водяного столба) значительно отдаляет наступление начальной остановки дыхания и увеличивает резистентность животного к цианиду в 2,5 раза.

При остановке дыхания тотчас приступают к искусственному дыханию, которое необходимо проводить длительно (часами). При развитии сердечнососудистой недостаточности вводят под кожу по 1 мл 20% раствора камфары или 10% раствора кофеина, или 10% раствора коразола, кордиамина, или 5% раствора эфедрина, или раствор адреналина (1:1000) подкожно (1 мл) или внутривенно (0,5 мл).

В случаях попадания цианидов через рот наряду с применением изложенной выше терапии необходимо назначение рвотных (0,5 мл 1 % раствора апоморфина подкожно), обильное промывание желудка 0,04% марганцовокислым калием или 1 % перекисью водорода для окисления синильной кислоты.

При оказании первой помощи необходимо создать больному условия полного покоя и применять тепло. Госпитализации подлежат все больные с острой интоксикацией цианидами. Пострадавшие должны транспортироваться в лежачем положении и только после выведения их из коматозного состояния. Больные, перенесшие интоксикацию в тяжелой форме, должны после выписки из стационара длительное время находиться под врачебным наблюдением.

Профилактика отравлений синильной кислотой и прочими цианидами

Необходимо их рациональное трудоустройство и проведение соответствующей терапии последствий отравления, если они возникают.

В профилактике отравлений синильной кислотой особенно большое значение имеет обеспечение герметизации аппаратуры и оборудования, из которых может выделиться этот яд, устройство местных вытяжных приспособлений у цианистых ванн, механизация загрузки и выгрузки деталей из цианистых печей при цианировании стали, тщательное проветривание всех помещений и контроль воздушной среды перед входом в них (например, после дератизации, дезинсекции синильной кислотой или другими цианистыми соединениями). При работах, связанных с опасностью воздействия HCN и ее соединений, необходимо пользоваться противогазом.

Поскольку синильная кислота отличается исключительной ядовитостью, необходимо в соответствующих производствах обращать особое внимание на предупреждение аварий и применять специальные приборы для постоянного контроля воздушной среды в опасных зонах и автоматической сигнализации об опасных концентрациях. Все работающие обязаны строго соблюдать меры личной гигиены, должны быть хорошо ознакомлены с опасным действием цианидов и обучены оказанию первой помощи пострадавшим, в частности технике искусственного дыхания.

Предельно допустимая концентрация в воздухе синильной кислоты и ее солей в пересчете на HCN составляет 0,0003 мг/л.

Противопоказания к приему на работу, связанную с воздействием цианидов

Противопоказаниями к приему на работу, связанную с воздействием цианидов, являются органические нарушения центральной нервной системы, психические заболевания, выраженные эндокринно-вегетативные расстройства, а также заболевания органов дыхания и сердечно-сосудистой системы, препятствующие ношению противогаза.

Наркотики и яды [Психоделики и токсические вещества, ядовитые животные и растения] Петров Василий Иванович

Синильная кислота

Синильная кислота

До настоящего времени важнейшим представителем цианидов считается синильная кислота. Эта легкая летучая жидкость с характерным запахом горького миндаля является весьма сильным ядом: в количестве 0,05 г она уже вызывает у человека смертельное отравление. Полученная впервые в чистом виде в 80-х годах XVIII столетия шведским фармацевтом и химиком Карлом Шееле синильная кислота (утверждают, что Шееле сам стал жертвой этого яда во время одного из экспериментов) и теперь привлекает к себе пристальное внимание многих специалистов.

Цианистые соединения использовались уже в древние времена, хотя, конечно, их химическая природа тогда не была известна. Так, древнеегипетские жрецы умели изготавливать из листьев персика эссенцию, которой они умерщвляли провинившихся людей. В Париже, в Лувре, на рулоне папируса имеется предостерегающее изречение: «Не произносите имени Иао под страхом наказания персиком», а в храме Изиды найдена надпись: «Не открывай – иначе умрешь от персика».

Сейчас мы знаем, что действующей составной частью здесь являлась синильная кислота, образующаяся в процессе ферментативных превращений некоторых веществ растительного происхождения. Ряд выдающихся химиков прошлого изучали строение, способы производства и использования цианидов. Так, в 1811 г. Гей-Люссак впервые показал, что синильная кислота представляет собою водородное соединение радикала, состоящего из углерода и азота, а Бунзен в середине XIX в. разработал метод промышленного получения цианида калия. Прошло уже много лет с тех пор, когда цианид калия и другие цианиды имели значение как средства предумышленных отравлений и когда к этим быстродействующим ядам особый интерес проявляли судебно-медицинские эксперты.

Истории известны случаи применения цианидов для массового поражения людей. Например, французская армия использовала во время первой мировой войны синильную кислоту в качестве отравляющего вещества, в гитлеровских лагерях уничтожения фашисты применяли ядовитые газы циклоны (эфиры цианмуравьиной кислоты), американские войска в Южном Вьетнаме использовали против мирного населения токсичные органические цианиды. Известно также, что в США длительное время применяется смертная казнь посредством отравления осужденных парами синильной кислоты в специальной камере.

Благодаря высокой химической активности и способности взаимодействовать с многочисленными соединениями различных классов цианиды широко применяются во многих отраслях промышленности, сельского хозяйства, в научных исследованиях, и это создает немало возможностей для исследований. Так, синильная кислота и большое число ее производных используется при извлечении благородных металлов из руд, при гальванопластическом золочении и серебрении, в производстве ароматических веществ, химических волокон, пластических масс, каучука, органического стекла, стимуляторов роста растений, гербицидов. Цианиды применяются также в качестве инсектицидов, удобрений и дефолиантов.

Синильная кислота выделяется в газообразном состоянии при многих производственных процессах, а также образуется при контакте цианидов с другими кислотами и влагой. Могут быть и отравления цианидами вследствие употребления в пищу большого количества семян миндаля, персика, абрикоса, вишни, сливы и других растений семейства розоцветных или настоек из их плодов. Оказалось, что все они содержат гликозит амигдалин, который в организме под влиянием фермента эмульсина разлагается с образованием синильной кислоты, бензальдегида и 2 молекул глюкозы.

Наибольшее количество амигдалина содержится в горьком миндале, в очищенных зернах которого его около 3%. Несколько меньше амигдалина (до 2%) в сочетании с эмульсином содержится в семенах абрикоса. Клинические наблюдения показали, что гибель отравленных наступала обычно после употребления в пищу около 100 очищенных семян абрикоса, что соответствует примерно 1 г амигдалина. Подобно амигдалину отщепляют синильную кислоту такие растительные гликозиды, как линамарин, находящийся в льне, и лауроцеразин, содержащийся в листьях.лавровишневого дерева. Весьма много цианистых веществ в молодых бамбуках и их побегах (до 0,15% сырой массы). В животном мире синильная кислота встречается в секрете кожных желез тысяченожек.

Токсичность цианидов для различных видов животных различна. Так, высокая резистентность к синильной кислоте отмечена у холоднокровных, в то время как многие теплокровные животные весьма к ней чувствительны. Что касается человека, то, по-видимому, он более устойчив к действию синильной кислоты, чем некоторые высшие животные. Это подтверждает, например, опыт, поставленный с большим риском для себя известным английским физиологом Баркроф-том, который в специальной камере вместе с собакой подвергался воздействию синильной кислоты в концентрации 18:6000. Опыт продолжался до тех пор, пока собака не впала в коматозное состояние и у нее не появились судороги. Экспериментатор в это время у себя не отмечал каких-либо признаков отравления. Лишь спустя 10–15 мин. после извлечения из камеры погибающей собаки у него отмечалось нарушение внимания и тошнота.

Имеется немало данных, свидетельствующих об образовании цианидов в организме человека в физиологических условиях. Цианиды эндогенного происхождения обнаружены в биологических жидкостях, в выдыхаемом воздухе, в моче. Считается, что нормальный их уровень в плазме крови может достигать 140 мкг/л.

Цианиды могут проникать во внутренние среды организма с отравленной пищей и водой, а также через поврежденную кожу. Очень опасно ингаляционное воздействие летучих цианидов, прежде всего синильной кислоты и хлорциана. Еще в 60-х годах XIX столетия обратили внимание на то, что венозная кровь, оттекающая от тканей и органов отравленных цианидами животных, приобретает алый, артериальный цвет. В дальнейшем было показано, что в ней содержится примерно столько же кислорода, сколько и в артериальной крови. Следовательно, под воздействием цианидов организм теряет способность усваивать кислород.

Тем самым тормозится течение нормального процесса тканевого дыхания. Таким образом, блокируя одцн из железосодержащих дыхательных ферментов, цианиды вызывают парадоксальное явление: в клетках и тканях имеется избыток кислорода, а усвоить его они не могут, так как он химически неактивен. Вследствие этого в организме быстро формируется патологическое состояние, известное под названием тканевой, или гистотоксической, гипоксии, что проявляется удушьем, судорогами, параличами. При попадании в организм несмертельных доз яда дело ограничивается металлическим вкусом во рту, покраснением кожи и слизистых оболочек, расширением зрачков, рвотой, одышкой и головной болью.

С другой стороны, если животный организм адаптирован к низкому уровню кислородного обмена, то его чувствительность к цианидам резко снижается. Выдающимся русским фармакологом Н. П. Кравковым в начале этого века был установлен любопытный факт: во время зимней спячки ежи переносят такие дозы цианида калия, которые во много раз превосходят смертельные. Стойкость ежей к цианиду Н. П. Кравков объяснял тем, что в условиях зимней спячки при низкой температуре тела потребление кислорода значительно снижено и животные лучше переносят торможение его усвоения клетками.

Способность CN-ионов обратимо тормозить тканевое дыхание и тем понижать уровень обменных процессов неожиданно оказалась весьма ценной для профилактики и лечения радиационных поражений. Это связано с тем, что в механизме повреждающего действия ионизирующих излучений на клеточные структуры ведущую роль играют продукты радиолиза воды, которые окисляют многие макромолекулы, в том числе ферменты тканевого дыхания. Цианиды, обратимо блокируя эти ферменты, защищают их от действия этих биологически активных веществ, образующихся под влиянием радиации. Иными словами, комплекс «цианид – фермент» становится относительно устойчивым к облучению. После лучевого воздействия он диссонирует вследствие понижения концентрации CN-ио-нов в биофазе из-за обезвреживания их в крови и выделения из организма. В качестве цианидного радиозащитного средства наибольшее распространение получил амигдалин.

Цианидами были отравлены или покончили жизнь самоубийством многие исторически известные личности.

Геринг Герман (1893–1946) – нацистский военный преступник, главнокомандующий военно-воздушными силами во время фашистской диктатуры в Германии, рейхсмаршал. Международный военный трибунал в Нюрнберге приговорил его к смертной казни через повешение.

Казнь нацистских преступников была назначена на 16 октября. Вечером 15 октября полковник Эндрюс, ведавший охраной тюрьмы, где находились осужденные, вбежал в комнату журналистов и растерянно сообщил, что умер Геринг. Несколько успокоившись, Эндрюс рассказал, что солдат охраны, дежуривший у двери камеры Геринга, услышал вдруг странный хрип. Он тут же вызвал дежурного офицера и врача. Когда те вошли в камеру, Геринг был в предсмертной агонии. Врач обнаружил у него во рту мелкие кусочки стекла и констатировал смерть от отравления цианистым калием.

Через некоторое время австрийский журналист Блейбтрей заявил во всеуслышание,– что это именно он помог Герингу уйти из жизни. Якобы до начала заседания он пробрался в зал и с помощью жевательной резинки прикрепил к скамье подсудимых ампулу с ядом. Сенсация принесла Блейбтрего немалые деньги, хотя была лживой от начала до конца – в то время зал заседаний охранялся лучше, чем любое другое место в Европе. А спустя несколько лет то же самое, что и австрийский журналист, заявил обергруппенфюрер Бах-Зелевски, выпущенный из тюрьмы. Но передачу яда Герингу он приписал себе. Возможно, лгут они оба. М. Ю. Рагин-ский считает, что яд был передан Герингу через офицера американской охраны за солидную взятку. А передала его жена Геринга, которая приезжала к мужу за несколько дней до назначенной даты исполнения приговора.

Гиммлер Генрих (1900–1945) – нацистский военный преступник, шеф гестапо, министр внутренних дел и командующий резервной армией в Германии.

20 мая 1945 года Гиммлер решил бежать. 23 мая был задержан англичанами и помещен в лагерь 031 возле города Люнебурга.

Британцы обнаружили в одежде Гиммлера ампулу с цианистым калием. На этом не остановились. Был вызван врач, который во второй раз осмотрел арестованного. Гиммлер открыл рот, и врач увидел у него между зубами что-то черное. Он потянул Гиммлера к свету, но тут бывший рейхсфюрер СС щелкнул зубами – разгрыз спрятанную капсулу. Через несколько секунд Гиммлер испустил дух.

Гитлер Адольф (псевдоним, настоящая фамилия Шикльгру-бер) (1889–1945) – лидер Национал-социалистической партии, глава германского государства в 1933–1945 годах.

Его смерть излагается в двух основных версиях.

Согласно первой версии, основанной на показаниях личного камердинера Гитлера Линге, фюрер и Ева Браун выстрелили в себя в 15.30. Когда Линге и Борман вошли в комнату, Гитлер якобы сидел на софе в углу, на столике перед ним лежал револьвер, из его правого виска текла кровь. Мертвая Ева Браун, находившаяся в другом углу, уронила свой револьвер на пол.

Другая версия (принятая почти всеми историками) гласит: Гитлер и Ева Браун отравились цианистым калием. Перед смертью Гитлер также отравил двух любимых овчарок.

Распутин (Новых) Григорий Ефимович (1864/186 5–1916) – фаворит Николая II и его жены Александры Федоровны.

В 1916 году против Распутина составился очередной заговор. Его главными участниками стали князь Феликс Юсупов, великий князь Дмитрий Павлович, известный политический деятель Владимир Пуришкевич и военный врач С. С. Лазаверт. Заговорщики заманили Распутина во дворец Юсупова в Петербурге, договорившись убить его там, а тело сбросить в реку, под лед. Для убийства были приготовлены пирожные, начиненные ядом, и склянки с цианистым калием, который собирались подмешать в вино.

По приезде Распутина во дворец его принял хозяин, а Пуришкевич, великий князь Дмитрий Павлович и доктор Лазаверт ждали наверху, в другой комнате.

Пуришкевич, описывая в своем двевнике убийство царского фаворита как подвиг, совершенный заговорщиками для спасения России, тем не менее отдает должное мужеству Распутина:

«Прошло еще добрых полчаса донельзя мучительно уходившего для нас времени, когда наконец нам ясно послышалось хлопанье одной за другой двух пробок, звон рюмок, после чего говорившие до этого внизу собеседники вдруг замолкли.

Мы застыли в своих позах, спустившись еще на несколько ступеней по лестнице вниз. Но… прошло еще четверть часа, а мирный разговор и даже порой смех снизу не прекращались.

«Ничего не понимаю, – разведя руками и обернувшись к великому князю, прошептал я ему. – Что он, заколдован, что ли, что на него даже цианистый калий не действует!»

…Мы поднялись по лестнице вверх и всею группою вновь прошли в кабинет, куда через две или три минуты неслышно вошел опять Юсупов, расстроенный и бледный.

«Нет, – говорит, – невозможно! Представьте себе, он выпил две рюмки с ядом, съел несколько розовых пирожных, и, как видите, ничего; решительно ничего, а прошло уже после этого минут, по крайней мере, пятнадцать! Ума не приложу, как нам быть, тем более, что он уже забеспокоился, почему графиня не выходит к нему так долго, и я с трудом ему объяснил, что ей трудно исчезнуть незаметно, ибо там наверху гостей немного…; он сидит теперь на диване мрачным, и, как я вижу, действие яда сказывается на нем лишь в том, что у него беспрестанная отрыжка и некоторое слюнотечение…»

Через минут пять Юсупов появился в кабинете в третий раз.

«Господа, – заявил он нам скороговоркой, – положение все то же: яд на него или не действует, или ни к черту не годится; время уходит, ждать больше нельзя».

«Но как же быть?» – заметил Дмитрий Павлович.

«Если нельзя ядом, – ответил я ему, – нужно пойти ва-банк, в открытую, спуститься нам всем вместе, или предоставьте мне это одному, я уложу его либо из моего „со-важа“, либо размозжу ему череп кастетом. Что вы скажете на это?»

«Да, – заметил Юсупов, – если вы ставите вопрос так, то, конечно, придется остановиться на одном из этих способов».

В США применяется вид казни, который вызывает явную аналогию с «душегубками» нацистов.

Технология казни такова: «Осужденного привязывают к креслу в герметичной камере. На груди укрепляется стетоскоп, соединенный с наушниками в соседнем помещении для свидетелей и используемый врачом для наблюдения за ходом казни. В камеру подается газ цианид, отравляющий осужденного при вдыхании. Смерть наступает в результате удушья, вызываемого подавлением газом цианидом дыхательных энзимов, обеспечивающих доставку кислорода кровью в клетки тела.

Хотя бессознательное состояние наступает быстро, вся процедура может занять и более продолжительное время, если осужденный будет пытаться оттянуть наступление смерти, задерживая или замедляя дыхание. Как и при использовании других способов исполнения казни, независимо от того, находится осужденный в бессознательном состоянии или нет, жизненно важные органы могут продолжать функционировать в течение продолжительного времени».

В штате Миссисипи 2 сентября 1983 года казнили путем отравления газом некоего Джимми Ли Грея. Во время казни его тело конвульсивно дергалось 8 минут подряд; он 11 раз вздохнул широко открытым ртом, не переставая биться головой о перекладину за спинкой кресла. По показаниям свидетелей, Ли Грей не выглядел мертвым и по окончании процедуры казни, когда тюремная администрация предложила им покинуть комнату для свидетелей, отделенную от комнаты казни толстым стеклом.

Из книги Наркотики и яды [Психоделики и токсические вещества, ядовитые животные и растения] автора Петров Василий Иванович

Синильная кислота До настоящего времени важнейшим представителем цианидов считается синильная кислота. Эта легкая летучая жидкость с характерным запахом горького миндаля является весьма сильным ядом: в количестве 0,05 г она уже вызывает у человека смертельное

Из книги Встреча с границей автора Беляев Владимир Павлович

Барбитуровая кислота Все более стремительное развитие фармацевтической промышленности в середине XX столетия, все более быстрый и расширяющийся выпуск новых синтетических ядов и лекарств, которые при неправильном употреблении тоже действовали как яды, – все это на

Из книги автора

Соляная кислота Соляная кислота – бесцветная жидкость, содержащая 35–38% хлористого водорода. На воздухе легко испаряется, дымит. Негорюча. Хорошо растворяется в воде. Корро-зионна. Относится к числу наиболее сильных кислот. Разрушает бумагу, дерево.Поражение наступает

Из книги автора

Серная кислота. Олеум Серная кислота – бесцветная маслянистая жидкость. Малолетучее соединение (0,022 мг/л). При 50° С и выше появляются пары серного ангидрида – продукта более токсичного, чем серная кислота. Растворимость в воде хорошая. С водяными парами воздуха образует

Из книги автора

Азотная кислота Азотная кислота – бесцветная дымящаяся на воздухе жидкость.Летучесть 184,6 мг/л. Пары в 2,2 раза тяжелее воздуха. Растворима в воде. Сильный окислитель. Коррозионна. Негорюча. Воспламеняет все горючие вещества. Взрывается в присутствии растительных,

Из книги автора

Фтористоводородная кислота (плавиковая кислота) Бесцветная, едкая, хорошо растворимая в воде жидкость. Легколетуча. Пары тяжелее воздуха. Коррозионна. Негорюча.Пары поражают глаза, слизистые оболочки верхних дыхательных путей и полости рта. При заглатывании паров

Из книги автора

Муравьиная кислота Муравьиная кислота – бесцветная, хорошо растворимая в воде и органических растворителях жидкость, острого запаха. Наиболее сильная из органических кислот. Пары могут образовывать с воздухом взрывоопасные смеси. Пожароопасна.Обладает

Из книги автора

Уксусная кислота Уксусная кислота – бесцветная жидкость с характерным резким запахом. Легколетучее соединение (36,8 мг/л). Пары в 2,1 раза тяжелее воздуха, скапливаются в низинах. Растворяется в воде и тяжелее ее. Пары легко воспламеняются при пожаре. Образуют взрывоопасные

Из книги автора

Винты и кислота Все мы любуемся красотой и добротностью внутренней отделки пассажирских вагонов. Никель, алюминий, нержавеющая сталь, пластмассы, лавсановые ткани, искусственная кожа не хуже сафьяна или шевро, поролон, стеклопластики. Все это создает уют, удобство для

Синильная кислота и ее соединения

Синильная кислота (цианистоводородная кислота) впервые синтезирована шведским ученым Карлом Шееле в 1782 г. В качестве отравляющего вещества синильная кислота впервые применена 1 июля 1916 г на реке. Сомме французскими войсками против немецких войск. Выраженный боевой эффект получить не удалось, так как относительная плотность паров HCN по воздуху меньше 1. Попытки утяжелить пары синильной кислоты путем добавления треххлористого мышьяка, хлорного олова и хлороформа также не привели к созданию боевых концентраций ядовитых паров в атмосфере.

Сама кислота и ее соли получили широкое применение в сельском хозяйстве (в качестве средств борьбы с вредителями плодовых деревьев), в промышленности (для извлечения золота и серебра из руд), в химическом синтезе нитрильного каучука, синтетических волокон, пластмасс и т. д.

В качестве ОВ применение маловероятно. Возможно использование производных синильной кислоты в качестве диверсионных агентов.

В настоящее время известны различные группы химических соединений, содержащих группу CN в молекуле.

250.Температура кипения синильной кислоты

Среди них: нитрилы — синильная кислота, дициан, цианистый калий, хлорциан — CI-CN, пропионитрил — C3H7-CN и т. д.); изонитрилы — фенилизонитрилхлорид; цианаты — фенилцианат; изоцианаты — метилизоцианат, фенилизоцианат; тиопианаты — роданистый калий; изотиоцианаты — метилизотиоцианат. Наименее токсичными (LD50 более 500 мг/кг) являются представители цианатов и тиоцианатов. Изоцианаты и изотиоцианаты обладают раздражающим и удушающим действием. Обшеядовитое действие (за счет отщепления в организме от исходного вещества иона CN-) проявляют нитрилы и в меньшей степени изонитрилы. Высокой токсичностью отличается, помимо самой синильной кислоты и ее солей, хлорциан, бромциан, а также пропионитрил, лишь в 3-4 раза уступающий по токсичности цианистому калию.

Синильная кислота встречается в растениях в форме гетерогликозидов. Около 2000 видов растений содержат CN-содержащие гликозиды. Например, в виде амигдалина HCN содержится в семенах горького миндаля, в косточках персиков, абрикосов, слив, вишни и др.

Физико-химические и токсические свойства

Синильная кислота — бесцветная прозрачная жидкость с запахом горького миндаля. температура кипения +25,7°С, замерзания 13,4° С. Относительная плотность ее паров по воздуху равна 0,93. Пары синильной кислоты плохо поглощаются активированным углем, но хорошо сорбируются другими пористыми материалами.

При взаимодействии со щелочами HCN образует соли (цианистый калий, цианистый натрий и т. д.), которые по токсичности мало уступают самой синильной кислоте. При замещение атома водорода галогенами образуются галандционы (хлорциан, бромциан, йодциан). Синильная кислота и циамиды вступают взаимодействие с серой (образуются нетоксичные родомиды), а также с альдегидами и нетонами (образуются малотоксичные циангидриды). Эти реакции лежат в основе детоксикации яда. В водных растворах кислота и ее соли диссоциируют с образованием иона CN-. Синильная кислота является слабой кислотой и может быть вытеснена из своих солей другими, даже самыми слабыми, кислотами (например, угольной).

Основным путем проникновения паров синильной кислоты в организм является ингаляционный. Среднесмертельная концентрация составляет 2 мг×мин/л, смертельное отравление солями синильной кислоты возможно при проникновении их в организм с зараженной водой или пищей. При отравлении через рот смертельными дозами для человека являются: HCN — 1 мг/кг; KCN — 2,5 мг/кг; NaCN — 1,8 мг/кг.

Механизм токсического действия и патогенез интоксикации

Как известно, на этом этапе переносчиками протонов и электронов является цепь цитохромов (цитохромы В, C1, С, А и А3). Последовательная передача электронов от одного цитохрома к другому приводит к окислению и восстановлению находящегося в них железа (Fe3+«Fe2+). Конечным звеном цепи цитохромов является цитохромоксидаза. Установлено, что энзим включает 4 единицы гема «А» и 2 единицы — «А3». Именно с цитохромоксидазы электроны передаются кислороду, доставляемому к тканям кровью. Установлено, что циан-ионы (CN-), растворенные в крови, достигают тканей, где вступают во взаимодействие с трехвалентной формой железа цитохрома А3 цитохромоксидазы (с Fe2+ цианиды не взаимодействуют). Соединившись с цианидом, цитохромоксидаза утрачивает способность переносить электроны на молекулярный кислород.

Вследствие выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. Кислород с артериальной кровью доставляется к тканям в достаточном количестве, но ими не усваивается и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов (АТФ и др.). Активируется гликолиз, т. е. обмен с аэробного перестраивается на анаэробный.

Клиника поражения

В результате тканевой гипоксии, развивающейся поя влиянием синильной кислоты, в первую очередь нарушаются функции центральной нервной системы. Действуя в больших дозах, вещества вызывают вначале возбуждение центральной нервной системы, а затем ее угнетение.

При действии сверхвысоких доз токсиканта развивается молниеносная форма отравления. Пострадавший через несколько секунд после воздействия теряет сознание. Развиваются судороги. Артериальное давление после кратковременного подъема падает. Через несколько минут останавливаются дыхание и сердечная деятельность.

При замедленном течении в развитии интоксикации можно выделить несколько периодов.

Период начальных явлений характеризуется легким раздражением слизистых оболочек верхних дыхательных путей и конъюнктивы глаз, неприятным горьким вкусом и жжением во рту. Ощущается запах горького миндаля. Наблюдаются слюнотечение, тошнота, иногда рвота, головокружение, головная боль, боль в области сердца, тахикардия (иногда брадикардия), учащение дыхания. Нарушается координация движений, ощущается слабость, возникает чувство страха. Перечисленные признаки появляются почти сразу после воздействия яда. Скрытого периода практически нет.

Диспноэтический период характеризуется развитием мучительной одышки. Наблюдается резко выраженное увеличение частоты и глубины дыхания. Первоначальное возбуждение дыхания по мере развития интоксикации сменяется его угнетением. Дыхание становится неправильным — с коротким вдохом и длительным выдохом. Нарастают боль и чувство стеснения в груди. Сознание угнетено. Наблюдаются выраженная брадикардия, расширение зрачков, экзофтальм, рвота. Кожные покровы и слизистые оболочки приобретают розовую окраску. В легких случаях отравление синильной кислотой этими симптомами и ограничивается. Через несколько часов все проявления интоксикации исчезают.

Диспноэтический период сменяется периодом развития судорог . Судороги носят клонико-тонический характер с преобладанием тонического компонента. Сознание утрачивается. Дыхание редкое, но признаков цианоза нет. Кожные покровы и слизистые оболочки розовые. Первоначально наблюдавшиеся замедление сердечного ритма, повышение артериального давления и увеличение минутного объема сердца сменяются падением артериального давления, учащением пульса, его аритмичностью. Развивается острая сердечно-сосудистая недостаточность. Возможна остановка сердца. Корнеальный, зрачковый и другие рефлексы снижены. Тонус мышц значительно повышен.

Вслед за коротким судорожным периодом, если не наступает смерть, развивается паралитический период . Он характеризуется полной потерей чувствительности, исчезновением рефлексов, расслаблением мышц, непроизвольной дефекацией и мочеиспусканием. Дыхание становится редким, поверхностным. Артериальное давление падает. Пульс частый, слабого наполнения, аритмичный. Развивается кома, в которой пострадавший, если не наступает смерть от остановки дыхания и сердечной деятельности, может находиться несколько часов, а иногда и суток. Температура тела у пораженных в паралитическом периоде понижена.

Угнетение тканевого дыхания приводит к изменению клеточного, газового и биохимического составов крови. Содержание в крови эритроцитов увеличивается вследствие рефлекторного сокращения селезенки и выхода клеток из депо. Цвет венозной крови становится ярко-алым за счет избыточного содержания оксигемоглобина (НbО). Артерио-венозная разница по кислороду резко уменьшается. Содержание СО2 в крови снижается вследствие меньшего образования и усиленного выделения при гипервентиляции легких. Такая динамика газового состава первоначально приводит к газовому алкалозу, который затем сменяется метаболическим ацидозом. В крови накапливаются недоокисленные продукты обмена: увеличивается содержание молочной кислоты, нарастает содержание кетоновых тел (ацетон, ацетоуксусная и b-окcимасляная кислоты), повышается содержание сахара (гипергликемия).

Продолжительность течения всего отравления, как и отдельных периодов интоксикации, колеблется в значительных пределах (от нескольких минут до многих часов). Это зависит от количества яда, попавшего в организм, предшествующего состояния организма и других причин.

Последствия интоксикации

Выраженность, характер осложнений и последствий отравления во многом зависят от продолжительности гипоксического состояния, в котором пребывает отравленный. Особенно частыми являются нарушения функций нервной системы. После перенесения острого отравления в течение нескольких недель наблюдаются головные боли, повышенная утомляемость, нарушение координации движений. Речь затруднена. Иногда развиваются параличи и парезы отдельных групп мышц. Возможны нарушения психики.

Наблюдаются стойкие изменения функций сердечно-сосудистой системы вследствие ишемии миокарда. Нарушения дыхательной системы проявляются функциональной лабильностью дыхательного центра и быстрой его истощаемостью при повышенных нагрузках.

Особенности действия галогенпроизводных синильной кислоты

Хлорциан (CICN) как отравляющее вещество впервые был применен в период Первой мировой войны в октябре 1916 г. французскими войсками. Хлорциан — бесцветная прозрачная жидкость, кипит при 12,6ºС и замерзает при -6,5°С. Обладает раздражающим запахом (запах хлора). Плотность пара по воздуху 2,1.

Бромциан (BrCN) впервые применен в годы Первой мировой войны (1916) австро-венгерскими войсками в виде смеси: 25% бромциана, 25% бромацетона и 50% бензола. Бромциан — бесцветное или желтое кристаллическое вещество, очень летучее, с резким запахом. Температура кипения 61,3ºС, плавления 52°С. Плотность паров по воздуху — 7.

Оба соединения (особенно C1CN) по токсичности близки к синильной кислоте.

Хлорциан и бромциан, действуя подобно HCN, обладают и раздражающим действием. Они вызывают слезотечение, раздражение слизистых оболочек носа, носоглотки, гортани и трахеи. В больших концентрациях могут вызывать токсический отек легких.

Мероприятия медицинской защиты:

Специальные санитарно-гигиенические мероприятия:

  • использование средств защиты органов дыхания в очаге химического заражения;
  • участие медицинской службы в проведении химической разведки, проведение экспертизы воды и продовольствия на зараженность ТХВ;
  • запрет на использование воды и продовольствия из непроверенных источников.

Специальные лечебные мероприятия:

  • применение антидотов и средств патогенетической и симптоматической терапии;
  • подготовка и проведение эвакуации.

Медицинские средства защиты

Антидоты используемые при отравлении цианидами делят на 2 группы:

1) метгемоглобинобразователи;

2) связывающие CN-группу.

1) Метгемоглобинообразователи:

Как известно, попав в организм, с железом гемоглобина, находящимся в двухвалентном состоянии, цианиды не взаимодействуют, и, проникнув в ткани, связываются с трехвалентным железом цитохромоксидазы, которая утрачивает при этом свою физиологическую активность. Если отравленному быстро ввести в необходимом количестве метгемоглобинообразователь, то образующийся метгемоглобин (железо трехвалентно) будет вступать в химическое взаимодействие с ядами, связывая их и препятствуя поступлению в ткани. Более того, концентрация свободных токсикантов в плазме крови понизится, и возникнут условия для разрушения обратимой связи циан-иона с цитохромоксидазой.

Образованный комплекс циан-метгемоглобин — соединение непрочное. Через 1 — 1,5 ч этот комплекс начинает постепенно распадаться. Однако поскольку процесс диссоциации CNMtHb растянут во времени медленно высвобождающийся циан-ион успевает элиминироваться. Teм не менее при тяжелых интоксикациях возможен рецидив интоксикации. К числу метгемоглобинообразователей — антидотов цианидов, относят: азотистокислый натрий, амилнитрит, 4-диметиламинофенол, антициан, метиленовый синий. Следует помнить, что метгемоглобин не способен связываться с кислородом, поэтому необходимо применять строго определенные дозы препаратов, изменяющие не боле 25-30% гемоглобина крови.

Наиболее доступным метгемоглобинообразователем является нитрит натрия (NaNО2) . При оказании помощи отравленным нитрит натрия вводят внутривенно (медленно) в виде 1-2% раствора в объеме 10-20 мл, под контролем артериального давления.

Амилнитрит предназначен для оказания первой медицинской помощи. Ампулу с амилнитритом (1 мл), которая находится в ватно-марлевой обертке, следует раздавить и заложить под маску противогаза. При необходимости его можно применять повторно. В настоящее время антидотные свойства препарата склонны объяснять не столько его способностью к метгемоглобинообразованию (которая выражена слабо), сколько усилением мозгового кровотока, развивающимся в результате сосудорасширяющего действия вещества.

Антициан является еще одним веществом, которое можно использовать в качестве антидота. При отравлении синильной кислотой первое введение антициана в виде 20% раствора производится в объеме 1,0 мл внутримышечно или 0,75 мл внутривенно. При внутривенном введении препарат разводят в 10 мл 25-40% раствора глюкозы или изотонического раствора хлорида натрия. Скорость введения 3 мл в минуту. При необходимости через 30 мин антидот может быть введен повторно в дозе 1,0 мл, но только внутримышечно. Еще через 30 мин можно провести третье введение в той же дозе, если к тому есть показания.

4-диметиламинофенол-гидрохлорид выпускается в ампулах в виде 15% раствора, вводится внутривенно из расчета 3-4 мг/кг массы больного в смеси с раствором глюкозы. Не вызывает развитие коллапса.

Частичным метгемоглобинообразуюшим действием обладает метиленовый синий . Основное же действие этого препарата заключается в его способности активировать тканевое дыхание. Препарат вводят внутривенно в виде 1% раствора в 25% растворе глюкозы (хромосмон ) по 50 мл.

2) Связывающие CN-группу:

Натрия тиосульфат (Nа2S2О3). Как уже указывалось, одним из путей превращений цианидов в организме является образование роданистых соединений при взаимодействии с эндогенными содержащими серу веществами. Образующиеся роданиды, выделяющиеся из организма с мочой, примерно в 300 раз менее токсичны, чем цианиды.

Истинный механизм образования роданистых соединений до конца не установлен, но показано, что при введении натрия тиосульфата скорость процесса возрастает в 15-30 раз, что и является обоснованием целесообразности использования вещества в качестве антидота при отравлениях цианидами. Препарат вводят внутривенно в виде 30% раствора по 50 мл. Натрия тиосульфат потенцирует действие других антидотов. Оказание неотложной помощи целесообразно начинать с метгемоглобинообразователей, а затем переходить на введение других препаратов.

Глюкоза. Антидотный эффект препарата связывают со способностью веществ, содержащих альдегидную группу в молекуле, образовывать с синильной кислотой стойкие малотоксичные соединения — циангидрины. Вещество вводят внутривенно в количестве 20-25 мл 25-40% раствора. Помимо способности связывать токсикант, глюкоза оказывает благоприятное действие на дыхание, функцию сердца и увеличивает диурез.

Препараты, содержащие кобальт . Известно, что кобальт образует прочные связи с циан-ионом. В опытах на животных была показана эффективность гидроксикобаламина (витамина В12) для лечения отравлений цианистым калием. Препарат весьма эффективен, мало токсичен, но дорог, что потребовало поиска других соединений. Среди испытанных средств были: ацетат, глюконат-, глутамат-, гистидинат кобальта и двукобальтовая соль этилендиаминтетраацетата (ЭДТА). Наименее токсичным и эффективным оказался последний препарат, который и используется в некоторых странах в клинической практике. В нашей стране препараты кобальта в качестве антидотов не применяются.

В процессе оказания помощи отравленным предусматривается применение и других средств патогенетической и симптоматической терапии. Положительный эффект оказывает гипербарическая оксигенация.

Механизмы токсического действия синильной кислоты

Цианиды угнетают окислительно-восстановительные процессы в тканях, нарушая последний этап передачи протонов и электронов цепью дыхательных ферментов от окисляемых субстратов на кислород.

Как известно, на этом этапе переносчиками протонов и электронов является цепь цитохромов (цитохромы b, С1, С, a и a3). Последовательная передача электронов от одного цитохрома к другому приводит к окислению и восстановлению находящегося в них железа (Fe3+ « Fe2+). Конечным звеном цепи цитохромов является цитохромоксидаза. Установлено, что энзим включает 4 единицы гема «a» и 2 единицы – «a3». Именно с цитохромоксидазы электроны передаются кислороду, доставляемому к тканям кровью. Установлено, что циан-ионы (CN-), растворенные в крови, достигают тканей, где вступают во взаимодействие с трехвалентной формой железа цитохрома а3 цитохромоксидазы (с Fe2+ цианиды не взаимодействуют). Соединившись с цианидом, цитохромоксидаза утрачивает способность переносить электроны на молекулярный кислород.

Вследствие выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. Кислород с артериальной кровью доставляется к тканям в достаточном количестве, но ими не усваивается и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов (АТФ и др.). Активируется гликолиз, то есть обмен с аэробного перестраивается на анаэробный.

Помимо непосредственного действия цианидов на ткани, существенную роль в формировании острых симптомов поражения, имеет рефлекторный механизм.

Организм располагает специализированными структурами, чувствительность которых к развивающемуся дефициту макроэргов на много превосходит все другие ткани. Наиболее изученным из этих образований является каротидный клубочек (glomus caroticum). Каротидный клубочек расположен в месте бифуркации общей сонной артерии на внутреннюю и наружную. Через него за минуту протекает около 20 мл крови на 1 г ткани (через головной мозг – 0,6 мл). Он состоит из двух типов клеток (по Гессу): I типа, богатых митохондриями гломусных клеток, и II типа, капсулярных клеток. Окончания нерва Геринга, связывающего структуру с ЦНС, пронизывают тела клеток II типа и приходят в соприкосновение с клетками I типа. М.Л. Беленький показал, что рефлексы с гломуса возникают при изменениях РаО2, рН, других показателей обмена, которые отмечаются уже при минимальных нарушениях условий, необходимых для осуществления процесса окислительного фосфорилирования. Сильнейшим возбуждающим агентом этой структуры является цианистый калий. Был сделан вывод, что основная физиологическая роль каротидного клубочка – сигнализировать ЦНС о надвигающемся нарушении энергетического обмена. Есть предположение, что пусковым звеном формирующихся в гломусе рефлекторных реакций, является понижение в клетках I типа уровня АТФ. Понижение уровня АТФ провоцирует выброс гломусными клетками химических веществ, которые и возбуждают окончания нерва Геринга. Хорошо известна чувствительность гломуса к ряду нейроактивных соединений, например, Н-холиномиметиков, катехоламинов (Аничков С.В.). Однако известно также и то, что ни одно из них не изменяет чувствительности структуры к цианиду.

Синильная кислота

Действие адекватных раздражителей на гломус сопровождается возбуждением ЦНС, повышением АД, брадикардией, учащением и углублением дыхания, выбросом катехоламинов из надпочечников и, как следствие этого, гипергликемией и т.д. То есть всеми теми реакциями, которые отмечаются на ранних стадиях интоксикации веществами общеядовитого действия. Каким бы образом не нарушали токсиканты механизмы энергообеспечения, реакция организма во многом однотипна. Проявления интоксикации – это эффекты, формирующиеся сначала как следствие возбуждения и перевозбуждения специализированных регулирующих систем (например, гломуса), а затем – нарушение биоэнергетики непосредственно в тканях, и, прежде всего, быстро реагирующих на дефицит макроэргов (мозг).

Учебный вопрос 5 .Клиника, профилактика и общие принципы оказания медицинской помощи при поражениях синильной кислотой в очаге и на этапах медицинской эвакуации