Лимитирующие факторы экология. Лимитирующие факторы

Экологические факторы, их классификация

Экологические факторы – это отдельные свойства или элементы среды, которые оказывают воздействие на организм, его состояние, развитие, продуктивность.

Существующие экологические факторы можно определенным образом классифицировать. Анализ огромного разнообразия факторов позволяет разделить их более или менее четко на три группы: абиотические, биотические, антропогенные.

АБИОТИЧЕСКИЕ БИОТИЧЕСКИЕ АНТРОПОГЕННЫЕ
Климатические: свет, температура, влага, движение воздуха, давление Фитогенные: растительные организмы сосна выделяет фитонциды, которые убивают бактерии; кипарис: корни выделяют в почву вещества, которые угнетают корневую систему растений-соседей. это совокупность различных воздействий человека, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни.
Эдафогенные: (от «эдфос» - почва): механический состав, влагоемкость, воздухопроницаемость, плотность Зоогенные: животные организмы поедание животных животными, божья коровка, хищники, листогрызущие насекомые, древоточицы
Орографические: рельеф, высота над уровнем моря, экспозиция склона Микробиогенные: вирусы, простейшие бактерии Например, бактерии, почвенные грибы влияют на состав почвы.
Химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность и состав почвенных растений

Антропогенные факторы среды. Прямое уничтожение человеком различных видов живых организмов. За 8 тыс. лет до н.э. на Земле было не более 5 млн. человек. В Москве сегодня насчитывается около 11 млн. За последние 400 лет по вине человека исчезло 226 видов зверей и птиц. Сильно пострадала флора и фауна островов и маленьких государств во время Великих географических открытий.

· Североамариканские бизоны уничтожены за несколько десятков лет. В 1830 г. насчитывалось около 40 млн. бизонов. Когда проникли европейцы, они уничтожали зверей ради спортивного интереса, иногда брали только язык. Из костей получали черную краску, и фирма процветала. К 1890 г. осталось менее 1 тыс. бизонов. Было решено устроить первый национальный парк на территории Америки – Иеллоустонский национальный парк. За чуть более сто лет удалось восстановить 30 тыс. бизонов.

· Полностью исчез странствующий голубь – его популяция была большой, фермеры убивали и кормили свиней. К 1900 г были полностью уничтожены. Остался один, умер в зоопарке.

· В Китае убивали воробьев. Экологический баланс нарушился, и урожай погиб от насекомых. Они закупали и завозили воробьев из других стран.



3.3. Основные законы экологии: закономерности действия факторов на организм

Особенности влияния экологических факторов на жизнедеятельность организмов имеют определенные закономерности.

Лимитирующие (ограничивающие) факторы - факторы среды, оказывающие кардинальное, наиболее очевидное воздействие на организм. Факторы, присутствующие, как в избытке, так и в недостатке, т.е. их уровень близок к пределам выносливости организма, называется лимитирующими (ограничивающими).

Бочка Либиха. Представьте себе бочку, в которой деревянные рейки по бокам разной высоты. Понятно, какой бы высоты ни были остальные рейки, но налить воды в бочку вы сможете ровно столько, какова длина самой короткой рейки.

Остается только «подменить» некоторые термины: высота налитой воды пусть будет какой-либо биологической или экологической функцией (например, урожайностью), а высота реек будет указывать на степень отклонения дозы того или иного фактора от оптимума.

Примеры ограничивающих (лимитирующих) факторов и их роли в жизни и распространении живых организмов многочисленны. Так, лось в Скандинавии встречается значительно севернее, чем в Сибири. Оказывается в данном случае причиной, препятствующей, расширению ареала на север является низкая зимняя температура (лимитирующий фактор), которая в Сибири ниже. Для кораллов, образующих рифы, лимитирующий фактор - температура воды, которая должна быть не ниже +20 0 С, поэтому коралловые рифы встречаются только в тропиках. Веслоногий рачок Copilla mirabile выдерживает колебания температуры в пределах +23…+ 29ºС.

Закон оптимума-пессимума : результат воздействия экологического фактора зависит от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Любой экологический фактор для животного организма может иметь параметры комфорта, оптимума. За его пределами – угнетение. Например, температура (рисунок).

Благоприятная сила воздействия называется зоной оптимума для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражается его угнетающее действие фактора на организм – это зона пессимума.

Максимально и минимально переносимые значения фактора – это критические точки , за пределами которых существование уже невозможно, наступает смерть. Пример : пища для человека во время блокадного Ленинграда и современный Макдоналдс.

Пределом выносливости между критическими точками интенсивности действия фактора называют экологической пластичностью (иначе - экологической валентностью). Чем шире диапазон колебаний экологического фактора, в пределах которого организм может существовать, тем больше его экологическая валентность и наоборот. Пример: карась и хариус, крыса и приматы.


Организмы, имеющие широкую экологическую валентность (пластичность) по отношению к основным абиотическим факторам среды в общем смысле называют эврибионтными ("эврос" – широкий). Пример: человек, таракан, крыса, горбуша.

Организмы, не способные переносить значительные колебания фактора, т.е. имеющие узкую экологическую пластичность называют стенобионтными ("стенос" – узкий). Примеры: приматы, белый медведь, хариус, колибри и пр.

Отношение организма к действию определенного фактора выражается прибавлением приставки эври – или стено –. Например, к температуре – эври- или стенотермные, к концентрации солей – эври- или стеногалинные, к давлению – эври- или стенобатные.

Так, например, песец в тундре может жить при диапазоне температур от +30 до -55ºС, то есть его диапазон температур составляет около 80ºС, а тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6ºС (от 23 до 29ºС). Эту особенность в восприятии экологических факторов разных живых организмов описывает закон оптимума-пессимума.

Закон взаимодействия экологических факторов (Эйльхард Митчерлих, Август Фридрих Тинеман, Б. Бауле, 1911): величина урожая (или благополучие вида, популяции, организма) зависит не от отдельного, пусть даже лимитирующего, фактора, но от всей совокупности экологических факторов одновременно . Благополучие организма по отношению к факторам среды зависит от того, в каком сочетании и силой действуют эти факторы. Все факторы в природе воздействуют на организм одновременно. Причем это не простая их сумма, а сложное взаимодействующее отношение.

Например , при оптимальной температуре вырастает выносливость организма к неблагоприятной влажности, недостатку питания; угроза неблагоприятного действия низких температур зимой (иначе обморожения) выше при повышенной влажности воздуха в сочетании с сильными ветрами, что характерно для приморского климата. Жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду.

Почему так важно знать о взаимодействии экологических факторов? В основе теоретического обоснования величины предельно допустимых концентраций (ПДК) загрязнителей воздействия загрязняющих агентов (например, шума, радиации) лежит закон лимитирующего фактора. ПДК устанавливается экспериментально на уровне, при котором в организме еще не происходят патологические изменения.

Не редко приходится слышать, как природоохранные органы радостно рапортуют о том, что уровень большинства загрязнителей в атмосфере города находится в пределах ПДК. А органы Госсанэпиднадзора в это же время констатируют повышенный уровень респираторных заболеваний у детей. Объяснение может быть таким. Не секрет, что многие атмосферные загрязнители обладают сходным эффектом: раздражают слизистые оболочки верхних дыхательных путей, провоцируют респираторные заболевания и т.д. И совместное действие этих загрязнителей дает аддитивный (или синергетический) эффект.

Поэтому в идеале при разработке норм ПДК и при оценке существующей экологической ситуации должно учитываться взаимодействие факторов. К сожалению, практически это бывает очень сложно сделать: трудно спланировать такой эксперимент, трудно оценить взаимодействие, плюс ужесточение ПДК имеет отрицательные экономические эффекты.

Закон минимума Юстуса Либиха (1840 г.): выносливость организма определяется самым слабым звеном в цепи его экологических потребностей .

В 1840 г. химик-органик Либих (1803-1873) выдвинул теорию минерального питания растений и установил, что рост растений в большей степени зависит от элемента, концентрация которого лежит в минимуме. «Закон минимума» справедлив и для других организмов, в том числе для человека.

Например . В течение лета в тундре наблюдается достаточное увлажнение и освещение, а почвы содержат необходимые минеральные вещества в нужных количествах. Однако все эти благопри­ятные факторы не ослабляют действия одного неблагоприятного - низких температур. Развитие растений зависит преимущественно от него. Таким образом, недостаток какого-либо элемента не может быть восполнен наличием или избытком другого.

Закон толерантности (Виктор Эрнест Шелфорд, 1913): лимитирующим фактором процветания организма может быть как минимум, так и максимум воздействия (диапазон этот определяет величину выносливости, толерантности организма к этому фактору).

Шелфорд показал, что не только вещество, присутствующее в минимуме, может определять жизнеспособность организма, но и избыток какого-либо элемента может приводить к нежелательным отклонениям. Например , недостаток влаги в почве приводит к падению тургора, нарушению минерального питания и в итоге к увяданию растения. С другой стороны, избыток почвенной влаги может привести к задыханию корней, повышению вероятности поражения грибными болезнями.

Другой пример – недостаток витаминов в организме человека является причиной развития такой патологии как авитаминоз, наоборот, избыточное потребление витаминов может привести к витаминозу, проявляющемуся в различных аллергических реакциях.

В различных местностях факторы, ограничивающие развитие организмов, часто неодинаковы: на севере это, как правило, недостаток тепла, а на юге для тех же видов – недостаток влаги, пищи, высокая температура.

Один и тот же фактор на разных стадиях развития может выступать и не выступать в качестве ограничивающего. Почти все растения и животные в период размножения более чувствительны к неблагоприятным условиям. Например , лимитирующее действие климатических факторов при географическом расселении (акклиматизации, реакклиматизации) многих охотничье-промысловых птиц распространяется лишь на яйца и птенцов, но не на взрослых особей.

Ограничивающие факторы среды определяют географическое распространение (географический ареал) вида. Выявление ограничивающих факторов очень важно в практике сельского и лесного хозяйства при расселении растений, при возделывании сельскохозяйственных культур, создании лесных культур и так далее.

Правило Аллена (Дж. Аллен, 1877): выступающие части тела теплокровных животных (конечности, хвост, уши и др.) тем короче, а тело тем массивнее, чем холоднее климат.

Правило Аллена убедительно иллюстрируется размерами ушей и ног зайцев. У среднеазиатских зайцев-песчаников длинные ноги и уши, в то время как европейские русаки и тем более, северные беляки сравнительно коротконоги и короткоухи. Еще более показателен пример с лисицами. В условиях жаркого климата Северной Африки обитает самая мелкая и вместе с тем самая длинноухая лисица-фенек, в наших тундрах живет низкорослый с короткими ушами и мордой полярный песец. Европейская лисица представляет нечто среднее между ними.

Правило Бергмана (К. Бергман, 1847): в пределах вида или достаточно однородной группы близких видов теплокровные животные с более крупными размерами тела встречаются в более холодных областях. (Подтверждается в 50% случаев у млекопитающих и в 75–90% случаев у птиц).

§ Длина черепа у подвидов дикого кабана из Южной Испании около 32 см, из Польши - приблизительно 41 см, из Белоруссии - 46 см, из Сибири - до 56 см.

§ Медведи. Белые медведи достигают длины тела 3 м при массе до 725 и даже 1000 кг. Бурый медведь образует несколько подвидов (географических рас), отличающихся размерами и окраской. Самые мелкие особи водятся в Европе, самые крупные- на Аляске и Камчатке - они весят 500 и более кг; попадались гиганты весом 700–1000 кг. Максимальный зафиксированный вес самца камчатского медведя составлял 600 кг, средний – 350-450 кг. Гималайский белогрудый медведь по величине почти вдвое меньше бурого и отличается от него более стройным телосложением, тонкой остроносой мордой, большими округлыми ушами; передние лапы сильнее задних. Самцы этого вида 150-170 см длиной, высота в холке около 80 см, весят 120-140 кг. Длина тела медведя-губача до 180 см, хвоста - ещё 10-12 см, высота в холке 60-90 см; весит он 54-140 кг (обычно 90-115 кг).

Медведь-губач, подобно муравьеду, в ходе эволюции адаптировался к питанию колониальными насекомыми (муравьями и термитами). Когти у него огромные, серповидные, приспособленные для лазания по деревьям, рытья и разрушения термитников. Губы и морда почти голые и очень подвижные, а ноздри могут произвольно смыкаться. Зубы мелкие, причем два центральных верхних резца отсутствуют, создавая проход, продолжающий «трубку» из вытянутых подвижных губ. Нёбо полое; язык очень длинный. Эти морфологические особенности позволяют губачу, добывая насекомых, сперва с силой выдувать из их разрушенного жилища пыль и грязь, потом всасывать добычу сквозь вытянутые губы. Возникающий при этом шум порой слышен за 150 м и часто привлекает внимание охотников.

Губач распространён в лесах Индии, Шри-Ланки, Бангладеша, Непала и Бутана.

Самые мелкие малайские медведи при длине тела в 1-1,5 м весят до 70 кг.

Бируанг распространён от северо-востока Индии (Ассам) и, возможно, южной части Китая (Сычуань) через Мьянму, Таиланд, полуострова Индокитай и Малакка до Индонезии (Суматра и Калимантан). Этот медведь обитает в тропических и субтропических лесах предгорий и гор Юго-Восточной Азии. Он хорошо приспособлен к лазанью по деревьям и, будучи ночным животным, часто целыми днями спит или принимает солнечные ванны в ветвях деревьев, где строит себе подобие гнезда. Здесь же он кормится листьями и плодами, заламывая ветки так, как это делает гималайский медведь. В зимнюю спячку не впадает.

Правило Глогера (К. Глогер, 1833): виды животных, обитающих в холодных и влажных зонах, имеют более интенсивную пигментацию тела (чаще черную или темно-коричневую), чем обитатели теплых и сухих областей. (Это позволяет им аккумулировать достаточное количество тепла.)

Иначе говоря, позвоночные животные, населяющие области с континентальным климатом, окрашены бледнее, чем родственные им формы в областях с морским климатом. Так, дальневосточный тигр заметно бледнее индийского; кавказского леопарда можно отличить от индо-африканского по более светлой окраске и т.д. Особого внимания заслуживает желтовато-серая, так называемая пустынная, окраска, характерная для пустынно-степных животных, т.е. обитателей областей с резко выраженным континентальным климатом. Приспособительное значение подобной окраски очевидно, так как делает ее обладателей незаметными на фоне песка (криптический эффект). Однако далеко не всем животным окраска с криптическим эффектом приносит пользу. Для летучих мышей, например, она не имеет большого значения, поскольку они днем прячутся в убежищах, кроме того, летящее животное обнаруживает себя уже благодаря резким движениям. Между тем у летучих мышей пустынных областей, в частности Средней Азии, мех, перепонки и даже когти имеют бледную серовато-желтую окраску. Возможно, такая окраска связана с какими-то физиологическими особенностями, определяющими возможность существования животных в области с пустынным климатом.

Лимитирующими (ограничивающими) экологическими факторами следует называть такие факторы, которые ограничивают развитие организмов из-за недостатка или их избытка по сравнению с потребностью (оптимальным содержанием).

В середине XIX в. Ю. Либихом был установлен закон минимума: урожай зависит от фактора, находящегося в минимуме. Например, если фосфор содержится в почве лишь в минимальных количествах, то это снижает урожай. Но оказалось, что если это же вещество находится в избытке, это также снижает урожай. Более того, факторы могут действовать изолированно или совокупно - ведь урожай зависит и от влажности, и от других факторов жизни растений. Тем не менее, факторы не могут заменить друг друга, что и нашло отражение в законе независимости факторов В.Р. Вильямса: условия жизни равнозначны, ни один из факторов жизни не может быть заменен другим. Например, нельзя заменить действие влажности действием углекислого газа или солнечного света и т. п.

Всю сложность взаимоотношения экологических факторов отражает закон толерантности В. Шелфорда: отсутствие или невозможность процветания определяется недостатком (в качественном или количественном смысле) или, наоборот, избытком любого из ряда факторов, уровень которых может оказаться близким к пределам переносимого данным организмом. Эти два предела называют пределами толерантности .

Например, организм способен существовать при температуре от минус 5° С до плюс 25 °С. Это и будет диапазоном толерантности организма по отношению к температуре. Если этот диапазон небольшой, то организм называют стенотермным («стено» - узкий), если он достаточно широкий, то его называют эвритермным («эври» - широкий). Подобно температуре действуют и другие факторы, например, соленость воды и т. п., а организмы по отношению к характеру их воздействия называют, соответственно, стенобионтами или эврибионтами . Например, говорят: организм стенобионтен по отношению к солености, влажности, или эврибионтен по отношению к климатическим факторам. Эврибионтные организмы наиболее широко распространены на Земле.

Сформулируем основополагающие законы экологии.

1. ЗАКОН МИНИМУМА Ю. ЛИБИХА .

В 1840 году немецкий химик Юстус Либих, выращивая растения на синтетических средах, обнаружил, что для нормального роста растения необходимо определенное число и количество химических элементов и соединений. Одни из них должны находится в среде в очень больших количествах, другие в малых, а третьи вообще в виде следов. И, что особенно важно: одни элементы не могут быть заменены другими. Среда, содержащая все элементы в изобилии, кроме одного, обеспечивает рост растения лишь до того момента, пока количество последнего не будет исчерпано. Рост ограничивается, таким образом, нехваткой единственного элемента, количество которого было ниже необходимого минимума. Этот закон, сформулированный Ю. Либихом применительно к роли химических эдафических факторов в жизни растений и названный им законом минимума, имеет, как выяснилось позже, универсальный экологический характер и играет важную роль в экологии.



Закон минимума: “Если все условия окружающей среды оказываются благоприятными для рассматриваемого организма за исключением одного, проявленного недостаточно (значение которого приближается к экологическому минимуму), то в этом случае это последнее условие, называемое лимитирующим фактором, приобретает решающее значение для жизни или смерти рассматриваемого организма, а, следовательно, его присутствия или отсутствия в данной экосистеме”.

2. ЗАКОН ТОЛЕРАНТНОСТИ ШЕЛФОРДА .

В 1913 году американский эколог В. Шелфорд обобщил закон минимума Либиха, открыв, что кроме нижнего предела интенсивности существует также и верхний предел интенсивности факторов внешней среды, определяющий верхнюю границу диапазона интенсивностей, соответствующего условиям нормальной жизнедеятельности организмов. В этой формулировке закон, названный экологическим законом толерантности, стал иметь более общий универсальный характер. Закон толерантности (лат. tolerantia - терпение): ” Каждый организм характеризуется экологическим минимумом и экологическим максимумом интенсивности каждого фактора внешней среды, в пределах которых возможна жизнедеятельность“. Диапазон экологического фактора между минимумом и максимумом называется диапазоном или областью толерантности. Несмотря на большое разнообразие экологических факторов, в характере их воздействия и в ответных реакциях живых организмов можно выявить ряд общих закономерностей.

Количественный диапазон фактора, наиболее благоприятный для жизнедеятельности, называется экологическим оптимумом (лат. оptimus - наилучший). Значения фактора, лежащие в зоне угнетения, называются экологическим пессимумом (лат. pessimum - наихудший). Минимальные и максимальные значения фактора, при которых наступает гибель, называются соответственно экологическим минимумом и экологическим максимумом . Например, по такому фактору как температура, экологический максимум соответствует температурам, при которых разрушаются ферменты и белки (+50 ¸ +60 °С). Однако, отдельные организмы могут существовать и при более высоких температурах. Так, в горячих источниках Камчатки и Америки обнаружены водоросли при t > +80 °С. Нижний предел температуры, при котором возможна жизнь, около -70 °С, хотя кустарники в Якутии не вымерзают даже при такой температуре. В анабиозе (гр. anabiosis - выживание), т.е. в неактивном состоянии, некоторые организмы сохраняются при абсолютном нуле (-273 °С).

Можно сформулировать ряд положений, дополняющих закон толерантности:

1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора внешней среды и узкий диапазон в отношении другого.

2. Организмы с широким диапазоном толерантности по большинству факторов обычно наиболее широко распространены.

3. Если условия по одному экологическому фактору не оптимальны для данного вида, то может сузиться и диапазон толерантности по другим экологическим факторам. Например, при близком к минимальному содержанию азота в почве снижается засухоустойчивость злаков.

4. В период размножения диапазон толерантности, как правило, сужается.

Организмы с узким диапазоном толерантности, или узкоприспособленные виды, способные существовать лишь при небольших отклонениях фактора от оптимального значения, носят название стенобионтных, или стеноэков (гр. stenos - узкий, тесный).

Организмы с широким диапазоном толерантности, или широкоприспособленные виды, способные выдерживать большую амплитуду колебаний экологического фактора, носят название эврибионтных, или эвриэков (гр. eurys - широкий).

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью .

Близким к экологической пластичности является понятие экологической валентности , которое определяется как способность организма заселять разнообразные среды.

Таким образом, стенобионты экологически непластичны, т.е. маловыносливы, имеют низкую экологическую валентность; эврибионты напротив - экологически пластичны, т.е. более выносливы, и имеют высокую экологическую валентность.

Для обозначения отношения организмов к конкретному фактору к его названию прибавляют приставки: стено- и эври- . Так, по отношению к температуре бывают стенотермные (карликовая береза, банановое дерево) и эвритермные (растения умеренного пояса) виды; по отношению к солености - стеногалинные (карась, камбала) и эвригалинные (колюшка); по отношению к свету - стенофонтные (ель) и эврифонтные (шиповник) и т.д.

Стено- и эврибионтность проявляется, как правило, по отношению к одному или немногим факторам. Эврибионты обычно широко распространены. Многие простейшие эврибионты (бактерии, грибы, водоросли) являются космополитами. Стенобионты, напротив, имеют ограниченный ареал распространения. Экологическая пластичность и экологическая валентность организмов часто изменяется при переходе от одной стадии развития к другой; молодые особи, как правило, более уязвимы и более требовательны к условиям среды, чем взрослые.

Вместе с тем организмы не являются рабами физических условий среды; они приспосабливаются сами и изменяют условия среды так, чтобы ослабить влияние лимитирующего фактора. Такая компенсация лимитирующих факторов особенно эффективна на уровне сообщества, но возможна и на уровне популяции.

Виды с широким географическим распространением почти всегда образуют адаптированные к местным условиям популяции, называемые экотипами . Их оптимумы и пределы толерантности соответствуют местным условиям. Появление экотипов иногда сопровождается генетическим закреплением приобретенных свойств и признаков, т.е. к появлению рас.

Организмы, живущие длительное время в относительно стабильных условиях, утрачивают экологическую пластичность, а те, которые были подвержены значительным колебаниям фактора, становятся более выносливыми к нему, т.е. увеличивают экологическую пластичность. У животных компенсация лимитирующих факторов возможна благодаря адаптивному поведению - они избегают крайних значений лимитирующих факторов.

При приближении к экстремальным условиям возрастает энергетическая цена адаптации. Если в реку сбрасывается перегретая вода, то рыбы и другие организмы тратят почти всю энергию на преодоление этого стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к вымиранию.

В данной работе я подробно раскрою тему «Лимитирующие факторы». Рассмотрю их определение, типы, законы и примеры.

Разные экологические факторы имеют для живых организмов неодинаковую значимость.

Для жизни организмов необходимо определенное сочетание условий. Если все условия среды обитания благоприятны, за исключением одного, то именно это условие становится решающим для жизни рассматриваемого организма.

Из всего многообразия лимитирующих факторов среды внимание исследователей привлекают, в первую очередь те, которые угнетают жизнедеятельность организмов, ограничивают их рост и развитие.

Основная часть

В совокупном давлении среды выделяются факторы, которые сильнее всего ограничивают успешность жизни организмов. Такие факторы называют ограничивающими, или лимитирующими.

Лимитирующие (ограничивающие) факторы – это

1)любые факторы, тормозящие рост популяции в экосистеме; 2)факторы среды, значение которых сильно отклоняется от оптимума.

При наличии оптимальных сочетаний множества факторов один лимитирующий фактор может привести к угнетению и гибели организмов. Например, теплолюбивые растения погибают при отрицательной температуре воздуха, несмотря на оптимальное содержание элементов питания в почве, оптимальную влажность, освещенность и так далее. Лимитирующие факторы являются незаменимыми в том случае, если они не взаимодействуют с другими факторами. Например, недостаток минерального азота в почве нельзя скомпенсировать избытком калия или фосфора.

Лимитирующие факторы для наземных экосистем:

Температура;

Питательные вещества в почве.

Лимитирующие факторы для водных экосистем:

Температура;

Солнечный свет;

Соленость.

Обычно эти факторы взаимодействуют таким образом, что один процесс ограничен одновременно несколькими факторами, и изменение любого из них приводит к новому равновесию. Например, увеличение доступности пищи, и уменьшение давления хищников могут привести к возрастанию численности популяции.

Примерами ограничивающих факторов являются: выходы неразмываемых пород, базис эрозии, борта долины и др.

Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова; бабочки озимой совки (вредителя овощных и зерновых культур) - зимняя температура и т. д.

Представление о лимитирующих факторах основывается на двух законах экологии: законе минимума и законе толерантности.

Закон минимума

В середине 19 века немецкий ученый химик-органик Либих, изучая влияние различных микроэлементов на рост растений, первый установилследующее: рост растений ограничивается элементом, концентрация и значение которого лежит в минимуме, т. е присутствует в минимальном количестве. Образно закон минимума помогает представить так называемая «бочка Либиха». Это бочка, деревянные рейки у которой разной высоты, как показано на рисунке

. Понятно, что какой бы высоты ни были остальные рейки, налить воды в бочку можно ровно столько, какова высота самой короткой рейки. Так и лимитирующий фактор ограничивает жизнедеятельность организмов, несмотря на уровень (дозу) остальных факторов. Например, если дрожжи поместить в холодную воду, низкая температура станет лимитирующим фактором их размножения. Это знает каждая хозяйка, а потому оставляет дрожжи «набухать» (а на самом деле размножаться) в теплой воде с достаточным количеством сахара.

Ограничивать, или лимитировать развитие организмов могут и тепло, и свет, и вода, и кислород, и другие факторы, если их качение соответствует экологическому минимуму. Например, тропическая рыба морской ангел погибает, если температура воды опустится ниже 16 °С. А развитие водорослей в глубоководных экосистемах лимитируется глубиной проникновения солнечного света: в придонных слоях водорослей нет.

Позднее (в 1909г.) закон минимума был истолкован Ф. Блекманом боле широко, как действие любого экологического фактора, находящегося в минимуме: факторы среды, имеющие в конкретных условиях наихудшее значение, особенно ограничивают возможность существования вида в данных условиях вопреки и, не смотря на оптимальное сочетание других отельных условий.

В современной формулировке закон минимума звучит так: выносливость организма определяется самым слабым звеном в цепи его экологических потребностей .

Для успешного применения закона лимитирующих факторов на практике необходимо соблюдать два принципа:

Первый - ограничительный, то есть закон строго применим лишь в условиях стационарного состояния, когда приток и отток энергии и веществ сбалансированы. Например, в некотором водоеме рост водорослей ограничивается в естественных условиях недостатком фосфатов. Соединения азота при этом содержатся в воде в избытке. Если в этот водоем начнут сбрасывать сточные воды с высоким содержанием минерального фосфора, то водоем может «зацвести». Этот процесс будет прогрессировать до тех пор, пока один из элементов не израсходуется до ограничительного минимума. Теперь это может быть азот, если фосфор продолжает поступать. В переходный же момент (когда азота еще достаточно, а фосфора уже достаточно) эффекта минимума не наблюдается, т. е. ни один из этих элементов не влияет на рост водорослей.

Второй - учитывает взаимодействие факторов и приспособляемость организмов. Иногда организм способен заменить дефицитный элемент другим, химически близким. Так, в местах, где много стронция, в раковинах моллюсков он может заменять кальций при недостатке последнего. Или, например, потребность в цинке у некоторых растений снижается, если они растут в тени. Следовательно, низкая концентрация цинка меньше будет лимитировать рост растений в тени, чем на ярком свету. В этих случаях лимитирующее действие даже недостаточного количества того или иного элемента может не проявляться.

Закон толерантности

Понятие о том, что наравне с минимумом лимитирующим фактором может быть и максимум, ввел спустя 70 лет в 1913 г. после Либиха, американский зоолог В.Шелфорд. Он обратил внимание на то, что ограничивать развитие живых организмов могут не только те экологические факторы, значения которых минимальны, но и те, которые характеризуются экологическим максимумом, и сформулировал закон толерантности : «лимитирующим фактором процветания популяции (организма) может быть как минимум, так и максимум экологического воздействия, а диапазон между ними определяет величину выносливости (предел толерантности) или экологическую валентность организма к данному фактору)» (рис. 2).


Рисунок 2- Зависимость результата действия экологического фактора от его интенсивности

Благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения или пессимума . Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование организма или популяции уже невозможно. Предел толерантности описывает амплитуду колебаний факторов, которая обеспечивает наиболее полноценное существование популяции. Отдельные особи могут иметь несколько иные диапазоны толерантности.

Позднее были установлены пределы толерантности относительно различных экологических факторов для многих растений и животных. Законы Ю. Либиха и В. Шелфорда помогли понять многие явления и распределение организмов в природе. Организмы не могут быть распространены повсюду потому, что популяции имеют определенный предел толерантности по отношению к колебаниям экологических факторов окружающей среды.

Многие организмы способны менять толерантность к отдельным факторам, если условия меняются постепенно. Можно, например, привыкнуть к высокой температуре воды в ванне, если залезть в теплую воду, а потом постепенно добавлять горячую. Такая адаптация к медленному изменению фактора - полезное защитное свойство. Но оно может оказаться и опасным. Неожиданное, без предупреждающих сигналов, даже небольшое изменение может оказаться критическим. Наступает пороговый эффект: последняя капля» может оказаться фатальной. Например, тонкая веточка может привести к перелому уже перегруженной спины верблюда.

Принцип лимитирующих факторов справедлив для всех типов живых организмов - растений, животных, микроорганизмов и относится как к абиотическим, так и к биотическим факторам. Например, лимитирующим фактором для развития организмов данного вида может стать конкуренция со стороны другого вида. В земледелии лимитирующим фактором часто становятся вредители, сорняки, а для некоторых растений лимитирующим фактором развития становится недостаток (или отсутствие) представителей другого вида. В соответствии с законом толерантности любой избыток вещества или энергии оказывается загрязняющим среду началом. Так, избыток воды даже в засушливых районах вреден, и вода может рассматриваться как обычный загрязнитель, хотя в оптимальных количествах она просто необходима. В частности, избыток воды препятствует нормальному почвообразованию в черноземной зоне.

К лимитирующим могут относиться любые факторы среды: освещение, температура, влажность, микросреда, состав почвы и др. Учение о лимитирующих факторах основано на двух основополагающих постулатах: законе Либиха (1840) и законе Шелфорда (1913).

Каждый вид растений, микроорганизмов и животных существует в условиях, при которых их жизнь наиболее комфортна. Для того, чтобы представители каждой популяции могли полноценно питаться, развиваться и размножаться, необходимо соответствие каждого экологического фактора определенным значениям, которые укладываются в более или менее широком диапазоне. К насекомым это относится в той же степени, что и к другим живым организмам, поэтому в дальнейшем мы будем рассматривать влияние лимитирующих факторов на примере этого класса.

Для жизнеспособности организмов опасно как снижение, так и превышение оптимальных значений температуры, влажности и т.д. Выход их величин за пределы выносливости приводит к гибели организма, популяции или даже экосистемы.

Например, если в почве недостает какого-то определенного микроэлемента, это вызывает снижение урожайности растений. Из-за отсутствия пищи гибнут насекомые, которые питались этими растениями. Последнее, свою очередь, отражается на выживаемости хищников-энтомофагов: других насекомых, птиц, некоторых Земноводных и т.д.

Каждый организм характеризуется определенным экологическим минимумом и максимумом, между которыми находится зона нормальной жизнедеятельности (или оптимума). Чем дальше тот или иной фактор отклоняется от значения оптимума, тем в большей степени заметно его негативное воздействие. За пределами критических точек (крайних значений лимитирующего фактора) существование организма невозможно.

Для обозначения степени толерантности (устойчивости) видов к различным значениям лимитирующих факторов, их принято разделять на маловыносливые - стенобионты - и выносливые, или эврибионты . К стенобионтам можно отнести низших насекомых, обитающих в пещерах (Бессяжковые и др.), а также большинство тропических отрядов, которые существуют лишь в условиях высокой температуры и влажности. Например, Чешуекрылые отряда Morpho (фото) обитают только в густых тропических лесах Центральной и Южной Америки и очень плохо разводятся в искусственных условиях. В частности, они очень требовательны к световому режиму: каждый вид этих бабочек летает лишь в определенное время дня.

Лимитирующие факторы неживой природы

Среди всех абиотических факторов насекомые обладают наибольшей чувствительностью к температуре, освещению и влажности.

Что касается первого, на территории нашей страны большинство видов способно жить в диапазоне температур от 3 до 40 градусов, хотя некоторые имеют механизмы приспособления, позволяющие им существовать и за пределами зоны нормальной жизнедеятельности. Так, ряд высокоразвитых насекомых проявляет устойчивость к замерзанию, так как жидкость в их организме не переходит в кристаллы, а витрифицируется - становится подобна стеклу. Это распространено среди некоторых жуков, Чешуекрылых и Двукрылых. Например, бабочки махаона (фото) может переносить глубокое замораживание почти до - 200 градусов.

Освещение также немаловажно. Под действием оптимальных доз ультрафиолета в организме насекомых происходят важные биохимические процессы: выделение гормонов, формирование пигмента и даже усвоение некоторых минеральных веществ. Приверженность к определенному световому режиму определяет их образ жизни (дневной, ночной), а также предпочтительную среду обитания. Так, жуков-щелкунов, обитающие в почве, не переносят яркого света и гибнут под воздействием интенсивного ультрафиолетового излучения.

Очень по-разному действует на насекомых такой лимитирующий фактор, как влажность. Некоторые из них, например, комары, мошки или примитивные отряды вроде поденок, живут преимущественно вблизи водоемов, с которыми связаны не только самые комфортные условия их жизни, но и процесс . По этой причине осушение болот является одним из самых эффективных методов борьбы с распространением комаров. Среди насекомых встречаются и ксерофиты, предпочитающие засушливые местности, например, муравьи, населяющие полупустыни.

Лимитирующие факторы живой природы

Ограничивать жизнедеятельность насекомых могут не только явления неживой природы, но и факторы биологического происхождения. Биологические лимитирующие факторы в виде хищников угрожают всем растительноядным видам: так, для бабочек даже в пределах класса угрозу способны создавать десятки хищников, от богомолов и муравьев до златоглазок и некоторых кузнечиков.

В обычных условиях каждый вид и популяция стремится занять свою экологическую нишу, однако иногда складываются такие условия, что два и более видов конкурируют между собой. В этом случае они становятся лимитирующими факторами друг для друга. Чаще всего конкуренция развивается из-за недостатка пищевых ресурсов; нередко она происходит между летающими насекомыми, опыляющими одни и те же растения.

У общественных форм - муравьев и термитов - конкуренция заметна не только за пределами вида, но и внутри него. Эти насекомые живут автономными колониями, и каждая семья создает для любой другой потенциальную угрозу, уничтожая доступную пищу и занимая ее потенциальный «дом».

Представление о лимитирующих факторах основывается на двух законах экологии: законе минимума и законе толерантности.

Закон минимума. Б середине прошлого века немецкий симик Ю. Либих (1840), изучая влияние питательных веществ на doct растений, обнаружил, что урожай зависит не от тех элементов питания, которые требуются в больших количествах и присутствуют в изобилии (например, СО2 и Н2О), а от тех, которые, хотя и нужны растению в меньших количествах, но фактически отсутствуют в почве или недоступны (например, фосфор, цинк, бор). Эту закономерность Либих сформулировал так: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве». Позднее этот вывод стал известен как закон минимума Либиха и был распространён на многие экологические факторы. Ограничивать, или лимитировать развитие организмов могут и тепло, и свет, и вода, и кислород, и другие факторы, если их качение соответствует экологическому минимуму. Например, тропическая рыба морской ангел погибает, если температура воды опустится ниже 16 °С. А развитие водорослей в глубоководных экосистемах лимитируется глубиной проникновения солнечного света: в придонных слоях водорослей нет.

Закон минимума Либиха в общем виде можно сформулировать так: рост и развитие организма зависит, в первую очередь, от тех факторов природной среды, значения которых приближается к экологическому минимуму.

Исследования показали, что закон минимума имеет два ограничения, которые следует учитывать при практическом применении.

Первое ограничение состоит в том, что закон Либиха строго применим лишь в условиях стационарного состояния системы. Например, в некотором водоеме рост водорослей ограничивается в естественных условиях недостатком фосфатов. Соединения азота при этом содержатся в воде в избытке. Если в этот водоем начнут сбрасывать сточные воды с высоким содержанием минерального фосфора, то водоем может «зацвести». Этот процесс будет прогрессировать до тех пор, пока один из элементов не израсходуется до ограничительного минимума. Теперь это может быть азот, если фосфор продолжает поступать. В переходный же момент (когда азота еще достаточно, а фосфора уже достаточно) эффекта минимума не наблюдается, т. е. ни один из этих элементов не влияет на рост водорослей.

Второе ограничение связано с взаимодействием нескольких факторов. Иногда организм способен заменить дефицитный элемент другим, химически близким. Так, в местах, где много стронция, в раковинах моллюсков он может заменять кальций при недостатке последнего. Или, например, потребность в цинке у некоторых растений снижается, если они растут в тени. Следовательно, низкая концентрация цинка меньше будет лимитировать рост растений в тени, чем на ярком свету. В этих случаях лимитирующее действие даже недостаточного количества того или иного элемента может не проявляться.

Закон толерантности был открыт английским биологом В. Шелфордом (1913), который обратил внимание на то, что ограничивать развитие живых организмов могут не только те экологические факторы, значения которых минимальны, но и те, которые характеризуются экологическим максимумом. Избыток тепла, света, воды и даже питательных веществ может оказаться столь же губительным, как и их недостаток. Диапазон экологического фактора между минимумом и максимумом В. Шелфорд назвал пределом толерантности.

Предел толерантности описывает амплитуду колебаний факторов, которая обеспечивает наиболее полноценное существование популяции. Отдельные особи могут иметь несколько иные диапазоны толерантности. Данная конкретная рыба, возможно, выдерживает более высокие или более низкие температуры или количества ядовитых веществ.

Позднее были установлены пределы толерантности относительно различных экологических факторов для многих растений и животных. Законы Ю. Либиха и В. Шелфорда помогли понять многие явления и распределение организмов в природе. Организмы не могут быть распространены повсюду потому, что популяции имеют определенный предел толерантности по отношению к колебаниям экологических факторов окружающей среды.

Закон толерантности В. Шелфорда формулируется так: рост и развитие организмов зависят, в первую очередь, от факторов среды, значения которых приближаются к экологическому минимуму или экологическому максимуму.

Было установлено следующее:

организмы с широким диапазоном толерантности ко всем факторам широко распространены в природе и часто бывают космополитами, например, многие патогенные бактерии;

организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон относительно другого. Например, люди более выносливы к отсутствию пищи, чем к отсутствию воды, т. е. предел толерантности относительно воды более узкий, чем относительно пищи;

если условия по одному из экологических факторов становятся неоптимальными, то может измениться и предел толерантности по другим факторам. Например, при недостатке азота в почве злакам требуется гораздо больше воды;

наблюдаемые в природе реальные пределы толерантности меньше потенциальных возможностей организма адаптироваться к данному фактору. Это объясняется тем, что в природе пределы толерантности по отношению к физическим условиям среды могут сужаться биотическими отношениями: конкуренция, отсутствие опылителей, хищники и др. Любой человек лучше реализует свои потенциальные возможности в благоприятных условиях (сборы спортсменов для специальных тренировок перед ответственными соревнованиями, например). Потенциальная экологическая пластичность организма, определенная в лабораторных условиях, больше реализованных возможностей в естественных условиях. Соответственно различают потенциальную и реализованную экологические ниши;

  • - пределы толерантности у размножающихся особей и потомства меньше, чем у взрослых особей, т.е. самки в период размножения и их потомство менее выносливы, чем взрослые организмы. Так, географическое распределение промысловых птиц чаще определяется влиянием климата на яйца и птенцов, а не на взрослых птиц. Забота о потомстве и бережное отношение к материнству продиктованы законами природы. К сожалению, иногда социальные «достижения» противоречат этим законам;
  • - экстремальные (стрессовые) значения одного из факторов ведут к снижению предела толерантности по другим факторам. Если в реку сбрасывается нагретая вода, то рыбы и другие организмы тратят почти всю свою энергию на преодоление стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к постепенному вымиранию. Психологический стресс также может вызывать многие соматические (гр. soma - тело) заболевания не только у человека, но и у некоторых животных (например, у собак). При стрессовых значениях фактора адаптация к нему становится все более и более «дорогостоящей».

Многие организмы способны менять толерантность к отдельным факторам, если условия меняются постепенно. Можно, например, привыкнуть к высокой температуре воды в ванне, если залезть в теплую воду, а потом постепенно добавлять горячую. Такая адаптация к медленному изменению фактора - полезное защитное свойство. Но оно может оказаться и опасным. Неожиданное, без предупреждающих сигналов, даже небольшое изменение может оказаться критическим. Наступает пороговый эффект: последняя капля» может оказаться фатальной. Например, тонкая веточка может привести к перелому уже перегруженной спины верблюда.

К счастью, не все возможные экологические факторы регулируют взаимоотношения между средой, организмами и человеком. Приоритетными в тот или иной отрезок времени оказываются различные лимитирующие факторы. На этих факторах эколог и должен сосредоточить свое внимание при изучении экосистем и управлении ими. Например, содержание кислорода в наземных местообитаниях велико, и он настолько доступен, что практически никогда не служит лимитирующим фактором (за исключением больших высот и антропогенных систем). Кислород мало интересует экологов, занимающихся наземными экосистемами. А в воде он нередко является фактором, лимитирующим развитие живых организмов («заморы» рыб, например). Поэтому гидробиолог всегда измеряет содержание кислорода в воде, в отличие от ветеринара или орнитолога, хотя для наземных организмов кислород не менее важен, чем для водных.

Лимитирующие факторы определяют и географический ареал вида. Так, продвижение организмов на север лимитируется, как правило, недостатком тепла. Биотические факторы также часто ограничивают распространение тех или иных организмов. Например, завезенный из Средиземноморья в Калифорнию инжир не плодоносил там до тех пор, пока не догадались завезти туда и определенный вид осы - единственного опылителя этого растения. Выявление лимитирующих факторов очень важно для многих видов деятельности, особенно сельского хозяйства. При целенаправленном воздействии на лимитирующие условия можно быстро и эффективно повышать урожайность растений и производительность животных. Так, при разведении пшеницы на кислых почвах никакие агрономические мероприятия не дадут эффекта, если не применять известкование, которое снизит ограничивающее действие кислот. Или, если выращивать кукурузу на почвах с очень низким содержанием фосфора, то даже при достаточном количестве воды, азота, калия и других питательных веществ она перестает расти. Фосфор в данном случае - лимитирующий фактор. И только фосфорные удобрения могут спасти урожай. Растения могут погибнуть и от слишком большого количества воды или избытка удобрений, которые в данном случае тоже являются лимитирующими факторами.

Знание лимитирующих факторов даёт ключ к управлению экосистемами. Однако в разные периоды жизни организма и в разных ситуациях в качестве лимитирующих выступают различные факторы. Поэтому только умелое регулирование условий существования может дать эффективные результаты управления.