Что измеряется в фарадах. В каких единицах измеряется ёмкость

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 микрофарад [мкФ] = 1E-06 фарад [Ф]

Исходная величина

Преобразованная величина

фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ

Подробнее об электрической емкости

Общие сведения

Электрическая емкость - это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

C = Q/∆φ

Здесь Q - электрический заряд, измеряется в кулонах (Кл), - разность потенциалов, измеряется в вольтах (В).

В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

Так как 1 фарад - очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости - это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ - это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

Использование емкости

Конденсаторы - устройства для накопления заряда в электронном оборудовании

Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор - система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare - «уплотнять», «сгущать») - двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.

Историческая справка

Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор - «лейденскую банку» - в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.

В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.

В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость - больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.

Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.

Примеры конденсаторов

Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.

Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.

Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.

Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.

Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.

В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

Маркировка конденсаторов

Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.

Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.

Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.

Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.

Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.

Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.

Имеются и другие типы конденсаторов.

Ионисторы

В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) - это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред - электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.

С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.Электромобиль А2В Университета Торонто. Под капотом

Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.

Поверхностно-емкостные экраны

Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.

Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.

Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.

Проекционно-емкостные экраны

Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.

Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

1. Маркировка тремя цифрами .

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра "9" обозначает показатель степени "-1". Если первая цифра "0", то емкость менее 1пФ (010 = 1.0пФ).

код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
109 1.0 пФ
159 1.5 пФ
229 2.2 пФ
339 3.3 пФ
479 4.7 пФ
689 6.8 пФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

2. Маркировка четырьмя цифрами .

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ .

3. Буквенно-цифровая маркировка .

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ, 22p = 22 пФ, 2н2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву "п" от английской "n".

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы .

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировка значение маркировка значение маркировка значение маркировка значение
A 1.0 J 2.2 S 4.7 a 2.5
B 1.1 K 2.4 T 5.1 b 3.5
C 1.2 L 2.7 U 5.6 d 4.0
D 1.3 M 3.0 V 6.2 e 4.5
E 1.5 N 3.3 W 6.8 f 5.0
F 1.6 P 3.6 X 7.5 m 6.0
G 1.8 Q 3.9 Y 8.2 n 7.0
H 2.0 R 4.3 Z 9.1 t 8.0

5. Планарные электролитические конденсаторы .

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

По таблице "A" — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

буква e G J A C D E V H
(T для танталовых)
K 2A
напряжение
(Вольт)
2,5 4 6,3
(иногда 63)
10 16 20 25 35 50 80 100

Китайские фарады - такие же свободные величины, как китайские ватты и ампер-часы? Емкость Солнечной системы на ладони - мифы или реальность? Расследование под катом.

Суперконденсаторы, или ионисторы - особый тип конденсаторов. Они по емкости раз в 1000 обходят электролитические конденсаторы, но не дотягивают раз в 10 до литиевых и никель-металл-гидридных аккумуляторов сходных размеров. Помимо очевидных преимуществ перед электролитиками, у них есть плюсы и перед аккумуляторами: суперконденсаторы быстро заряжаются, очень долговечны, у них напрочь отсуствует эффект памяти, они запросто разряжаются в ноль без потери емкости. Недостатки, правда, тоже есть: у них небольшое рабочее напряжение (обычно 2,7 или 5,5 Вольт), они не любят превышения этого напряжения и у них относительно быстрый саморазряд. Остальные подробности есть в .

В общем, мне понадобился суперконденсатор. На Али один продавец продает такие заметно дешевле конкурентов. 200 рублей за пару - ну ведь не деньги уже, правда? В Санкт-Петербург пришли очень быстро - дней за 16. Вот вертел их в руках, и как-то даже не верил, что 4 Фарада. Я уже сталкивался с китайскими ампер*часами, китайскими ваттами и даже с китайскими размерами обуви. А тут - такая штуковина. Ни один тестер же не измерит, шкалы не хватит. Позаряжал-поразряжал я их - вроде заряд берут. Подтвердил получение, выставил фидбэк. Но хочется же знать наверняка, что за зверь подвернулся.

Надо сказать, что емкость конденсатора - это способность принять электрический заряд (измеряем его в кулонах) при зарядке до напряжения в один вольт. С вольтами все понятно - вольтметр есть у каждого. А кулон - тоже ничего сложного: если по проводу течет ток в один ампер, то за одну секунду как раз кулон и перельется. Т.е. теоретически, мой ионистор мог бы выдавать четырехамперный ток целую секунду. Но мы же понимаем, что это в идеальном мире с идеальными ионисторами. Куда там нашим. Впрочем, и требования у меня не столь жесткие.

Я решил быстренько смастерить приборчик на Ардуино. Ничего сложного: замеряем напряжение, ток, пишем в лог и по результатам считаем емкость. Написал скриптик, подсоединил датчики. Буквально на один раз прогнать тест. Но аппетит же приходит во время еды. Датчиками тока и напряжения не ограничился, добавил кардридер, чтоб писать на флешку и не зависеть от подключения к компу. Экран, чтоб следить за процессом и часы реального времени. Тест обещал быть долгим: неплохо бы и токи утечки померить.


Первая сложность была досадной, хоть и предсказуемой. Датчик тока, рассчитанный на 5 Ампер, мои миллиамперы мерил с большой погрешностью, а точнее сказать не мерил вовсе. Показания зависели от расположения проводов, и предметов на столе, а разрядности АЦП Ардуины явно не хватало. Как альтернатива виделся только костыль с операционным усилителем, данунафиг. И пришлось нагрузку заменить на тестовый резистор, а ток высчитывать по датчику напряжения, как отношение напряжения к сопротивлению резистора.
Второй неприятностью стала неожиданно кончившаяся память. Пришлось перетыкать провода на плату Ардуино Мега 2560. И только так мой тестер стал выдавать первые результаты. Кривая напряжения при разряде оказалась убывающей экспонетной, тут никаких сюрпризов. Но начало ее отличалось заметной просадкой из-за великоватого внутреннего сопротивления ионистора. В теории эта экспонента выглядит так:

U(t) = U0 * exp(-t/RC).

Где:
U0 - напряжение на заряженном доверху ионисторе, в вольтах;
t - время в секундах,
R - сопротивление нагрузки, в омах;
C - емкость нашего ионистора, в настоящих полновесных фарадах

Фарадах, а не каки-нибудь там микро- или нано-, кстати говоря. Как несложно догадаться, во всей этой ерунде только «C» мы не знаем. И хотим узнать. Остальное либо нам подвластно (U0 и R), либо мы можем измерить (время t и напряжение в это время U(t)). Короче говоря, восстановить каноническую красивую экспоненту (и фактическое значение емкости вместе с ней) мы можем по двум точкам этой экспоненты - начальной и какой угодно второй. Емкость получается такой:

С = -t/(R*ln(Ut/U0))

Скриптик Ардуины дополнился новым кусочком кода. Теперь он следил за напряжением, рассчитывал ток на нагрузке, отслеживал полученный с ионистора заряд и уточнял емкость ионистора. По мере снижения напряжения и тока, потери в цепи уменьшались, и характеристики кривой все больше совпадали с расчетной экспонентой. А вычисленное значение емкости - с реальным.

Для приготовления такого устройства вам понадобится:
1) Arduino MEGA 2560 - в UNO памяти не хватит.
2) Часы реального времени на микросхеме DS 3231 (можно на ds1307) - таймер в Ардуине на больших временных отрезках, оказывается, врет
3) Кардридер с интерфейсом SPI (SD или TF - по вкусу)
4) Датчик напряжения. По сути - резистивный делитель
5) Датчик тока (для больших токов, в коде реализован не вполне)
6) Дисплей 0.96" OLED 128x64 с интерфейсом IIC
7) Резистор известного номинала.

// Capacitance meter v1.1 // consists: // 1) Arduino MEGA 2560 // 2) DS 3231 real time clock: SCL, SDA, VCC, GND // 3) Micro SD card reader SPI: CS -> 53, SCK -> 52, MOSI -> 51, MISO -> 50, VCC, GND // 4) analog voltage sensor: VCC, GND, A0 // 5) analog current sensor: VCC, GND, A1 (optional, for big discharge currents, not fully implemented yet) // 6) 0.96" OLED 128x64 IIC display: SCL, SDA, VCC, GND // 7) test resistor in parallel with voltage sensor (optional, for big capacitance) // // © Artem Alekseyenko, 2016 #include #include #include #include "Wire.h" #define DS3231_I2C_ADDRESS 0x68 File myFile; OLED myOLED(SDA, SCL, 8); extern uint8_t SmallFont; extern uint8_t MediumNumbers; extern uint8_t BigNumbers; const int VoltagePin = A0; const int CurrentPin = A1; const int chipSelect = 53; // cs pin from card reader to this pin on Arduino (Mega 2560 only) const float Resistor = 216.5; // External load resistor Ohm = 40.5 or 218.0 // 37400.0; when no resistor. It"s input impedance of voltmeter only const int FrameLength = 5; // time frame length for rounding and stat accumulation: // 2, 5, 10, 15, 20, 30 sec const float voltage_coefficient = 47.41; // depends on voltage sensor and arduino board, must be tested and adjusted individually: 40.92 // 47.41 when powered by external power source, // 40.92 - default // 43.75 - when powered by computer const float minimal_voltage = 0.1; // from this voltage and above experiment starts, and till this voltage experiment lasts. 1.7 const unsigned long micro_koeff = 1; // 1 for Farad or 1000 for milliFarad or 1000000 for microFarad. float VoltageInaccount = 0.0; float CurrentInaccount = 0.0; double FaradInaccount = 0.0; float VoltageValue = 0.0; long CurrentValue = 0.0; float AHforPrint = 0.0; float Faradadd = 0.0; float FaradforPrint = 0.0; float highest_voltage_achieved = 0.0; boolean recorded = false; int cap_connected = 0; boolean working = false; boolean this_is_the_end = false; unsigned long FrameCounter = 0; unsigned long TimeFromStart = 0; int starting_time = 0; int loops = 1; int lastloops = 50; int frame = 1; int secs = 0; // Convert normal decimal numbers to binary coded decimal byte decToBcd(byte val){ return((val/10*16) + (val%10));} // Convert binary coded decimal to normal decimal numbers byte bcdToDec(byte val){ return((val/16*10) + (val%16));} void readDS3231time(byte *second, byte *minute, byte *hour, byte *dayOfWeek, byte *dayOfMonth, byte *month, byte *year) { Wire.beginTransmission(DS3231_I2C_ADDRESS); Wire.write(0); // set DS3231 register pointer to 00h Wire.endTransmission(); Wire.requestFrom(DS3231_I2C_ADDRESS, 7); // request seven bytes of data from DS3231 starting from register 00h *second = bcdToDec(Wire.read() & 0x7f); *minute = bcdToDec(Wire.read()); *hour = bcdToDec(Wire.read() & 0x3f); *dayOfWeek = bcdToDec(Wire.read()); *dayOfMonth = bcdToDec(Wire.read()); *month = bcdToDec(Wire.read()); *year = bcdToDec(Wire.read()); } byte readDS3231second() { Wire.beginTransmission(DS3231_I2C_ADDRESS); Wire.write(0); Wire.endTransmission(); Wire.requestFrom(DS3231_I2C_ADDRESS, 1); byte second = bcdToDec(Wire.read() & 0x7f); int secondint = int(second); return secondint; } void setup() { byte second, minute, hour, dayOfWeek, dayOfMonth, month, year; myOLED.begin(); // myOLED.setFont(SmallFont); Wire.begin(); Serial.begin(9600); pinMode(53, OUTPUT); readDS3231time(&second, &minute, &hour, &dayOfWeek, &dayOfMonth, &month, &year); Serial.print(hour, DEC); Serial.print(":"); if (minute<10) {Serial.print("0");} Serial.print(minute, DEC); Serial.print(":"); if (second<10){Serial.print("0");} Serial.print(second, DEC); Serial.print(" "); Serial.print(dayOfMonth, DEC); Serial.print("/"); Serial.print(month, DEC); Serial.print("/"); Serial.println(year, DEC); Serial.print("Initializing SD card..."); if (!SD.begin(4)) { Serial.println("initialization failed!"); return; } Serial.println("initialization done."); File myFile = SD.open("discharg.txt", FILE_WRITE); if (myFile) { myFile.print(hour, DEC); myFile.print(":"); if (minute<10) {myFile.print("0");} myFile.print(minute, DEC); myFile.print(":"); if (second<10){myFile.print("0");} myFile.print(second, DEC); myFile.print(" "); myFile.print(dayOfMonth, DEC); myFile.print("/"); myFile.print(month, DEC); myFile.print("/"); myFile.println(year, DEC); myFile.print("Resistor: "); myFile.print(Resistor); myFile.println(" Ohm"); myFile.println("Time Volts mAmps mAh F_real F_calculated"); myFile.close(); Serial.println("done."); } else { Serial.println("error opening dischag.txt"); } Serial.print("Resistor: "); Serial.print(Resistor); Serial.println(" Ohm"); Serial.println("Time Volts mAmps mAh F_real F_calculated"); // re-open the file for reading: myFile = SD.open("discharg.txt"); if (myFile) { // Serial.println("discharg.txt:"); // read from the file until there"s nothing else in it: // while (myFile.available()) { // Serial.write(myFile.read()); // } // close the file: myFile.close(); } else { // if the file didn"t open, print an error: Serial.println("error opening discharg.txt"); } } void loop() { if ((working == true) && (this_is_the_end == false)) { int currentsecond = readDS3231second(); if (currentsecond%FrameLength == 1) {recorded = false;}; if ((currentsecond%FrameLength == 0) && (recorded != true)) { FrameCounter += 1; int lengthoftest_hr = FrameCounter * FrameLength / 3600; int lengthoftest_min = (FrameCounter - lengthoftest_hr*3600/FrameLength)*FrameLength/60; int lengthoftest_sec = (FrameCounter - lengthoftest_hr*3600/FrameLength - lengthoftest_min*60/FrameLength)*FrameLength; float VforPrint = VoltageInaccount/float(loops); float AforPrint = VforPrint*1000/Resistor; AHforPrint += AforPrint/720.0; if (VforPrint != 0) {Faradadd = micro_koeff*FrameLength*AforPrint/(1000*highest_voltage_achieved);}; // micro*time*Amp/Volt_max FaradforPrint += Faradadd; float FaradCalculated = abs(micro_koeff*(FrameCounter*FrameLength)/(Resistor*log(VforPrint/highest_voltage_achieved))); // /5.0 FaradInaccount += FaradCalculated; myOLED.clrScr(); // myOLED.setFont(MediumNumbers); myOLED.setFont(SmallFont); myOLED.printNumI(lengthoftest_hr, LEFT, 0); myOLED.print(":", 12, 0); myOLED.printNumI(lengthoftest_min, 17, 0); myOLED.print(":", 30, 0); myOLED.printNumI(lengthoftest_sec, 35, 0); myOLED.printNumF(highest_voltage_achieved, 2, CENTER, 0); myOLED.printNumI(loops, RIGHT, 0); myOLED.setFont(MediumNumbers); myOLED.printNumF(abs(FaradforPrint), 1, LEFT, 45); myOLED.setFont(SmallFont); myOLED.print("F ", 38, 45); myOLED.setFont(MediumNumbers); myOLED.printNumF(FaradCalculated, 1, 70, 45); // myOLED.printNumF(abs(AHforPrint), 0, 70, 45); myOLED.setFont(SmallFont); // myOLED.print("mAh", RIGHT, 45); myOLED.print("Fc", RIGHT, 45); myOLED.setFont(MediumNumbers); // myOLED.printNumF(float(VoltageInaccount/float(circles)), 2, RIGHT, 20); myOLED.setFont(SmallFont); myOLED.print("V", RIGHT, 25); myOLED.setFont(MediumNumbers); myOLED.printNumF(VforPrint, 2, 70, 20); // myOLED.printNumF(abs(float(CurrentInaccount/float(circles))), 0, LEFT, 40); // myOLED.printNumF(abs(float(CurrentInaccount/60.0)), 0, LEFT, 40); myOLED.printNumF(AforPrint, 0, LEFT, 20); // abs(myOLED.setFont(SmallFont); myOLED.print("mA", 38, 25); myOLED.setFont(MediumNumbers); myOLED.update(); myFile = SD.open("discharg.txt", FILE_WRITE); if (lengthoftest_hr < 10) {myFile.print("0");}; myFile.print(lengthoftest_hr); myFile.print(":"); if (lengthoftest_min < 10) {myFile.print("0");}; myFile.print(lengthoftest_min); myFile.print(":"); if (lengthoftest_sec < 10) {myFile.print("0");}; myFile.print(lengthoftest_sec); myFile.print(" "); myFile.print(VforPrint); myFile.print(" "); myFile.print(AforPrint); myFile.print(" "); myFile.print(abs(AHforPrint)); myFile.print(" "); myFile.print(abs(FaradforPrint)); myFile.print(" "); myFile.println(FaradCalculated); myFile.close(); if (lengthoftest_hr < 10) {Serial.print("0");}; Serial.print(lengthoftest_hr); Serial.print(":"); if (lengthoftest_min < 10) {Serial.print("0");}; Serial.print(lengthoftest_min); Serial.print(":"); if (lengthoftest_sec < 10) {Serial.print("0");}; Serial.print(lengthoftest_sec); Serial.print(" "); Serial.print(VforPrint); Serial.print(" "); Serial.print(AforPrint); Serial.print(" "); Serial.print(AHforPrint); Serial.print(" "); Serial.print(abs(FaradforPrint)); Serial.print(" "); Serial.println(FaradCalculated); myOLED.setFont(SmallFont); // myOLED.print(":", LEFT, 9); // myOLED.print(":", RIGHT, 9); // myOLED.update(); VoltageInaccount = 0.0; CurrentInaccount = 0.0; lastloops = loops; loops = 0; recorded = true; if (VforPrint <= minimal_voltage) { this_is_the_end = true; myFile = SD.open("discharg.txt", FILE_WRITE); myFile.print("The end voltage: "); myFile.println(VforPrint); Serial.print("The end voltage: "); Serial.println(VforPrint); }; }; // int shift = 110*loops/lastloops; // myOLED.print("o", 7+shift, 9); int shift = 120*loops/lastloops; myOLED.print("\|", shift, 8); myOLED.update(); VoltageValue = analogRead(VoltagePin); VoltageValue = float(VoltageValue)/voltage_coefficient; VoltageInaccount += VoltageValue; loops = loops + 1; delay(1); } if (working == false){ // waiting of cap connection myOLED.clrScr(); myOLED.setFont(SmallFont); myOLED.print("Connect a capacitor", CENTER, 30); myOLED.update(); VoltageValue = analogRead(VoltagePin); VoltageValue = float(VoltageValue)/voltage_coefficient; if (VoltageValue > minimal_voltage) { cap_connected += 1; if (VoltageValue > highest_voltage_achieved) {highest_voltage_achieved = VoltageValue; starting_time = 2 * cap_connected;}; if (cap_connected > 100) {working = true;}; if ((cap_connected > 4) && (cap_connected > starting_time)) {working = true;}; if (working == true) { myFile = SD.open("discharg.txt", FILE_WRITE); myFile.print("The hightst voltage: "); myFile.println(highest_voltage_achieved); myFile.print("00:00:00 "); myFile.print(highest_voltage_achieved); float highest_ampers_achieved = highest_voltage_achieved*1000/Resistor; myFile.print(" "); myFile.print(highest_ampers_achieved); myFile.println(" 0.0 0.0 0.0"); myFile.close(); Serial.print("The hightst voltage: "); Serial.println(highest_voltage_achieved); Serial.print("00:00:00 "); Serial.print(highest_voltage_achieved); Serial.print(" "); Serial.print(highest_ampers_achieved); Serial.println(" 0.0 0.0 0.0 0.0"); VoltageInaccount = highest_voltage_achieved; loops = 1; } } delay (10); } if (this_is_the_end == true) { delay (1000); } }

Итак. Что же показал эксперимент.
Расчетная емкость одного ионистора составила 3,8 Фарад, другого - 3,9. Я счтиаю, очень неплохо. Можно даже сказать - отлично!


Да, интересная деталь: емкость нашей любимой планеты в полтора раза меньше фарада. Около фарада - у Юпитера, самой большой планеты Солнечной системы. А вот в руках у меня ионистор на 4 Фарада. Размером с два пятачка.


При подключении в параллель пара набрала 7,8 Фарад. Интересна и реально снятая емкость при разрядке не в ноль, а до напряжения 1,7 Вольт. После уже хлопотно использовать такие низкие напряжения. Получилось точнехонько 5 Фарад. Если перевести в привычные миллиампер*часы, то выходит 6,7. Теоретически, если задаться целью посадить ионистор в ноль, то снимется 10,8 мА*ч.


Красная линия - напряжение, падает с разрядом от 5 до 1,7 Вольт
Зеленая линия - емкость, снятая на резистор. На практике 5 Фарад, в теории до 7,8.
Голубая линия - оценка емкости - по мере проведения эксперимента уточняется и оказывается в районе 7,8 Фарада.

В итоге:
Продавец отличный: доставка как на ракете и не нажульничал с емкостью.
Ионисторы годные: трепал их и в хвост и в гриву, даже полярность путал - все снесли, емкость не упала.
Приборчик получился полезный, пока разбирать не стал. Отградуировал тестить электролитики обычные.

Товар куплен на свои.
Если обзор понравился - в следующем расскажу зачем они мне понадобились.

Планирую купить +95 Добавить в избранное Обзор понравился +189 +376