Измерение модуля упругости.

Цель работы: Получить зависимость между деформацией и напряжением при деформациях растяжения и сжатия. Определить модуль Юнга для стали.

Приборы и материалы: Прибор для изучения, деформации растяжения, состоящий из рамы, линейки, дисков известной массы, микрометр, индикаторы линейных перемещений, установка Ф3ПА, штангенциркуль.

Деформацией твердого тела называется изменение размеров и формы тела или его частей. Деформация может быть следствием теплового расширения, воздействия электрических или магнитных полей, внешних механических сил. Деформация называется упругой, если она исчезает полностью после снятия нагрузки и пластической, если после снятия нагрузки она не исчезает. Строго го­воря, абсолютно упругих тел не существует, но при определенных условиях величиной остаточных деформаций можно пренебречь. Твердые тела с хорошей точностью можно считать упругими, пока деформация не превышает некоторого предела, который называется пределом упругости.

При деформации твердого тела внутри него возникают силы, которые называются силами упругости. Мерой сил упругости слу­жит напряжение

s=dF/dS ,

где dF - результирующая сила упругости, действующая на элементарную площадку dS . Если си­ла dF направлена перпендикулярно к площадке, то напряжение называется нормальным, если сила параллельна площадке, то на­пряжение называется касательным.

Простейшим видом деформации является растяжение или сжатие тела. Рассмотрим деформацию растяжения однородной прово­локи под действием внешней силы, направленной вдоль ее оси. Напряжение, которое возникает при такой деформаций, является нормальным и однородным, т. е. имеет одинаковое значение по все­му сечению проволоки. Поэтому

Величина внутренних сил F при однородной деформации растя­жения (сжатия) равна приложенной внешней силе.

Пусть начальная длина проволоки l о, а длина ее после деформации l, тогда удлинение проволоки Dl = l l 0 . Величина e=Dl/l о называется относительной деформацией растяжения.

Опытным путем установлено, что напряжение, возникающее в упруго деформируемом теле при однородной деформации, прямо пропорционально величине относительной деформации

Записанное соотношение выражает закон Гука.

Закон Гука выполняется только при малых деформациях, когда их величина не превышает предела упругости. При пластической деформации закон Гука не имеет места.

Коэффициент пропорциональности Е называется модулем про­дольной упругости или модулем Юнга.

Модуль Юнга является одной из важнейших механических характеристик твердого тела и определяет его способность сопротив­ляться внешним механическим воздействиям.

Измерение модуля Юнга можно проводить прямым методом, измеряя растяжение или сжатие тела, либо из измерения деформации изгиба.

Установка (рис. 4) состоит из осно­вания 1, двух вертикальных стоек 2, двух перекладин: верхней 3 и нижней 4. Иссле­дуемая проволока крепится к верхней перекладине и проходит через отверстие в нижней перекладине. К проволоке жест­ко прикреплены две горизонтальные площадки А и В. При растяжении проволоки площадки перемещаются вместе с ней. На перекладинах укреплены индикаторы ли­нейных перемещений 6 и 7, стержни ко­торых упираются в площадки А и В. При деформации проволоки индикаторы фик­сируют перемещение площадок А и В, поэтому разность их показаний равна удлинению участка проволоки АВ, который является рабочим участком. Использование двух индикаторов позволяет ис­ключить из результата измерений деформацию проволоки в месте ее закрепления.

Внизу к проволоке прикреплена платформа 8, которая нагружа­ется дисками известной массы. На приборе укреплена миллиметро­вая линейка, с помощью которой определяется длина проволоки.

1. Определение модуля Юнга методом растяжения

1. Микрометром несколько раз измерить диаметр проволоки d в различных местах. Результаты занести в таблицу 1.

Таблица 1

2. Измерить длину рабочего участка проволоки l o . Нагружая плат­форму дисками, снять показания индикаторов a 1 и a 2 и массу дис­ков т , те же измерения провести при разгружении платформы.

Результаты измерений занести в таблицу 2.

Таблица 2

3. Заполнить таблицу 1 в соответствии с правилами обработки результатов прямых измерений. Доверительную вероятность при­нять равной Р =0,67, в этом случае коэффициент Стьюдента t = l. Доверительный интервал Dd рассчитать по формуле

где q d - погрешность микрометра.

По среднему значению диаметра найти площадь сечения про­волоки S.

4. Для каждой строки таблицы 2 рассчитать суммарную массу дисков М, растягивающих проволоку; напряжение s = Mg/S; удли­нение проволоки при нагружении и разгружении Dl =a i -a z ; отно­сительную деформацию e= D1 /1 о .

5. Построить на миллиметровой бумаге график зависимости s от e .

Найти модуль Юнга Е , как тангенс угла наклона графика к оси абсцисс

Е =Ds /De .

6. Определить относительную погрешность измерения модуля Юнга:

где S e - среднее квадратическое отклонение модуля Юнга по случайному разбросу точек; q 1 -погрешность линейки.

0. ВВЕДЕНИЕ

В методических указаниях к лабораторной работе N 3 "Оп-ределение модуля упругости и коэффициента Пуассона" указывает-ся цель работы, приводится характеристика испытуемого образца и даётся методика проведения испытаний.

Для лучшего усвоения материала по темам: "Растяжение и сжатие" и "Упруго – механические свойства материалов" приво-дятся основные теоретические положения, позволяющие квали-фицированно провести испытания, экспериментально определить по одному испытанию образца величины упругих постоянных (Е и μ) и проанализировать полученные результаты.

Завершаются методические указания перечнем возможных вопросов при защите отчета по этой лабораторной работе.

2. ЦЕЛЬ РАБОТЫ

Определить опытным путем величину модуля упругости Ε и коэффициент Пуассона μ и сравнить полученные результаты со справочными данными.

3. ОБОРУДОВАНИЕ, ПРИБОРЫ И ИНСТРУМЕНТЫ

Испытательная машина – МР-0,5. Тензометрическая станция – ЦТМ-5. Штангенциркуль.

4. ХАРАКТЕРИСТИКА ОБРАЗЦОВ

Вид образца, имеющего прямоугольное поперечное сечение, представлен на рис.1. На больших сторонах поперечного сечения образца наклеены по одному тензодатчику в продольном направлении и по одному в поперечном. Каждый тензодатчик под-ключен к отдельному каналу тензометрической станции ЦТМ-5.

Рис. 1. Вид обра о тензо датчиками

5. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

При деформациях подавляющего большинства материалов в упругой стадии справедлив закон Гука, который устанавливает прямую пропорциональную зависимость между напряжениями и деформациями:

Величина Ε представляет собой коэффициент пропорцио-нальности и называется модулем упругости первого рода. Так как относительное удлинение – величина безразмерная, модуль упруго-сти Ε имеет размерность напряжения. Закон Гука справедлив при напряжениях, не превышающих предел пропорциональности апц.

На диаграмме растяжения (сжатия) (рис.2) модуль упруго-сти Ε представлен тангенсом угла наклона прямой О А к оси (tg α).

Рис.2. Диаграмма растяжения (сжатия) образца из малоуглеродистой стали:

  1. растяжения,
  2. сжатия

При растяжении стержня, его удлинение в продольном на-правлении сопровождается пропорциональным сужением в попе-речном направлении, что показано на рис.3.

Рис.3. Изменение формы образца при испытаниях на растяжение

Продольную деформацию принято обозначать: абсолютную – Δi (Δ^ = i\- l),

относительную -ε (ε = Δ -£ / ^). Поперечную деформацию обозначим:

абсолютную – ДЬ (Ab = bi – b),

относительную – ε1 (ε1 = Ab / b). Как показывает опыт ε’= – μ · ε,

где μ – безразмерный коэффициент пропорциональности, называе-мый коэффициентом Пуассона, величина которого зависит только от материала и характеризует его свойства. Знак " – " указывает, что продольная и поперечная деформации всегда противоположны по знаку. Коэффициент Пуассона принято считать положительной величиной, поэтому относительные линейные деформации берутся по абсолютной величине (μ= ε11 /1 ε |).

6. ПОРЯДОК ПРОВЕДЕНИЯ ИСПЫТАНИЙ

1.- Перед испытанием студентам необходимо ознакомиться с устройством машины МР-0,5 (первое занятие) и правилами поведения в лаборатории при проведении испытаний (вводный инструктаж).

2. Измеряют штангенциркулем характерные линейные размеры испытуемого образца.

3. Убеждаются в подключении тензодатчиков к тензометрической станции ЦТМ-5.

4.- Наблюдают за включением машины, процессом нагружения образца начальной нагрузкой (0 – 100 Η-), которая задается преподавателем.

5.- Путем последовательного переключения соответствующих каналов тензометрической станции снимают показания каждого из тензометров. Эти данные заносятся в журнал наблюдений. В отчете по лабораторной работе в разделе "Результаты испытаний" предварительно готовится таблица..

6. Наблюдают за последующими двумя ступенями нагружения (100 – 200 Η каждая по указанию преподавателя) образца, снимают показания тензодатчиков и заносят их в таблицу.

7. В процессе проведения испытаний внимательно следят за ком-ментариями преподавателя и при завершении испытаний по его указанию приступают к обработке результатов испытания.

7. ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЯ

В журнале наблюдений (табл.) подсчитываются прираще-ния соответствующих отсчетов и определяются их средние значе-ния (АсрР, АсрАь АсрА2, ДсрВь АсрВ2). Затем подсчитываются средние приращения по тензометрам в продольном (АсрА) и попе-речном (АсрВ) направлениях.

По найденным АсрА и АсрВ находятся значения относи-тельной линейной деформации соответственно в продольном и поперечном направлениях:

ε = АсрА · с, ε1 = АсрВ · с,

где с – коэффициент чувствительности тензодатчика, который оп-ределяется тарировкой и сообщается преподавателем.

Определяются значение нормального напряжеия, средин для каждой ступени нагружения образца:

σ = АсрР / F, где F – площадь поперечного сечения образца (F = b · d).

Исходя из закона Гука при растяжении – сжатии (σ= Ε-ε) находится модуль упругости материала образца:

По найденным значениям относительных деформаций в продольном и поперечном направлениях определяется величина коэффициента Пуассона:

Для любого материала величина коэффициента Пуассона должна находиться в пределах от 0 до 0,5.

Найденные значения модуля упругости Ε и коэффициента Пуассона μ следует сравнить с соответствующими величинами, приведенными в справочной литературе и сделать выводы.

Тема: Опытная проверка закона Гука. Определение модуля упругости первого рода и коэффициента Пуассона.

Цель работы:

1. Проверить в пределах упругости линейность связи деформации и нагрузки.

2. Определить числовые значения упругих постоянных E (модуля упругости первого рода) и (коэффициента Пуассона) для стали.

3. Выяснить при этом физический смысл этих постоянных.

I. НЕОБХОДИМы Е ПРИБОРЫ И ОБОРУДОВАНИЕ:

1. Стальной образец прямоугольного поперечного сечения.

2. Разрывная машина с силоизмерительным устройством УМ-5.

3. Тензометр – прибор для измерения упругих удлинений.

4. Штангенциркуль.

П. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ

Упругие постоянные материалов используются при решении большого числа задач прочности и всех задач жёсткости и устойчивости. Они характеризуют способность материала сопротивляться различным видам деформаций при воздействии на них внешних нагрузок. Значения упругих характеристик, равно как и всех известных физических постоянных, не могут быть постулированы или найдены на основе логических и математических рассуждений, а могут быть получены только экспериментальным путём при испытании образцов на растяжение (сжатие), изгиб и кручение.

Различают материалы изотропные и анизотропные. Изотропия означает независимость свойств материала от направления воздействия нагрузки. Изотропные материалы характеризуются тремя упругими постоянными: модулем Юнга, коэффициентом Пуассона и модулем сдвига. При этом, как показывает теория, только две из них являются линейно независимыми. Анизотропные материалы могут иметь до 18 различных характеристик.

Монокристаллы и отдельные зёрна сталей анизотропны. Однако, благодаря их малости и хаотическому расположению в пространстве сталь приобретает статистически обоснованную изотропность и нуждается в экспериментальном определении, как минимум, двух упругих постоянных (например, модуля Юнга и коэффициента Пуассона).

Модуль Юнга или модуль упругости первого рода E характеризует сопротивляемость материала деформированию в направлении воздействия растягивающих или сжимающих нагрузок. Чем больше модуль Юнга, тем меньше удлинение или укорочение стержня при прочих равных условиях (длине, площади, нагрузке). Модуль Юнга является коэффициентом пропорциональности между нормальным напряжением и относительной линейной деформацией в законе Гука, записанном в дифференциальной форме: . На основе этой формулы находят опытным путём значение модуля упругости

где - формула для напряжения при растяжении, подтверждённая теорией упругости (эталоном точности для сопротивления материалов) и опытными данными; F – сила, растягивающая образец и определяемая по силоизмерительному устройству; A – площадь поперечного сечения, определяемая путём измерения размеров; - относительная продольная деформация, определяемая методом тензометрирования .

На основании закона Гука (1) абсолютная продольная деформация бруса прямо пропорциональна внутренней продольной силе N , вызвавшей эту деформацию:

Измерив опытным путем величину осевой нагрузки F и вызванную ею продольную деформацию и зная размеры испытуемого бруса, вычисляют модуль продольной упругости по формуле, полученной из (2)

Геометрические параметры образца l и A находятся до нагружения , а нагрузка и соответствующее ей удлинение берутся из опыта.

Коэффициент Пуассона характеризует способность материала сопротивляться поперечному деформированию, т.е. изменению размеров в направлении, перпендикулярном воздействию силы. Это сопротивление французский академик Пуассон предложил характеризовать в безразмерной форме как модуль отношения поперечной и продольной относительных деформаций, определяемых опытным путём:

b и l - начальные поперечные и продольные размеры бруса, соответственно.

Для нахождения и достаточно при одной и той же нагрузке измерить абсолютное сужение и абсолютное удлинение , а также знать необходимые первоначальные размеры.

Изменение формы образца при испытаниях на растяжение


Модуль сдвига или модуль упругости второго рода G характеризует сопротивляемость материала угловым деформациям при воздействии пары сил. Он является коэффициентом пропорциональности между касательным напряжением и углом сдвига в законе Гука при сдвиге, записанном в дифференциальной форме: На основе этой формулы можно экспериментально определить модуль сдвига, например, при кручении образца круглого сечения. В данной работе модуль сдвига определяют косвенным путём, исходя из теоретической зависимости между тремя упругими постоянными:

Упругие постоянные материала имеют более стабильные значения по сравнению с механическими характеристиками. Например, для различных марок сталей временное сопротивление может отличаться в несколько раз (от 400 до 4000 МПа и выше), в то время как среднестатистические значения упругих постоянных для всех марок сталей изменяются в узких пределах:

МПа;МПа.

В лабораторной работе необходимо произвести сравнение полученных значений постоянных со средними справочными данными для стали:

МПа;МПа.

III. ВЫПОЛНЕНИЕ ЭКСПЕРИМЕНТА И ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

1) Измерить ширину и толщину образца, подсчитать площадь попе­речного сечения.

2) Ознакомиться со схемой разрывной машины, разобраться в прин­ципе ее работы.

УНИВЕРСАЛЬНАЯ МАШИНА УМ-5

Универсальной машина УМ-5 называется потому, что позволяет проводить испытания на растяжение, сжатие, изгиб и срез. Максимальное усилие, развиваемое машиной – 5 тонн.

Кинематическая схема машины показана ниже.

Рис.1. 1,2 - червячный механизм; 3 - винт; 4,5 - нижний и верхний захваты образца; 6 - рычаг силоизмерительного устройства;

7,8 - верхняя и нижняя опора рычага; 9 - маятник; 10 - колесико шкалы нагрузок; 11 - колесико шкалы деформаций.

Машина УМ-5 состоит из следующих узлов: станины, нагружающего механизма с коробкой скоростей, силоизмерительного механизма, измерителя деформаций и самопишущего диаграммного устройства.

Станина представляет собой жесткую раму, образованную чугунными коробками (верхней и нижней), соединенными между собой двумя колоннами.

В нижней коробке помещается червячный механизм (1-2). При вращении червячной шестерни (2) нагружающий винт (3) получает поступательное движение вниз или вверх. Реверсирование осуществляется переключением электродвигателя. Вращение от электродвигателя передается через коробку скоростей (на схеме не показана), позволяющей установить четыре скорости нагружения - 2, 4, 10, 60 мм/мин.

На конце нагружающего винта установлен нижний захват (4). Верхний захват (5) через промежуточную тягу подвешен к рычагу (6) силоизмерителъного механизма.

Рычаг (6) имеет две опоры: нижнюю – (8) и верхнюю – (7). Благодаря этому рычаг может воспринимать как нагрузку направленную вниз (растяжение), так и вверх (сжатие). От рычага через промежуточные звенья усилие передается на короткий рычаг двуплечего маятника (9), вызывая отклонение его, пропорционально приложенной нагрузке. Груз на конце маятника составной, что позволяет получить три диапазона максимальных нагрузок - 1000, 2000 и 5000 кгс (10, 20, 50 кн ). При отклонении маятника перемещается рейка, поворачивая колесико со стрелкой. Так измеряется нагрузка.

Измеритель деформаций состоит также из рейки, связанннной одним концом с нижним захватом, а другим концом входящей в зацепление с колесиком (11). На оси с колесиком укрепляется стрелка, показывающая величину перемещения нижнего захвата, а, следовательно, и деформацию образца.

3) Разобраться со схемой рычажного тензометра и ознакомиться с реальным прибором (узнать, как он крепиться на деталь, как производится отсчет и т.п.).

ТЕНЗОМЕТР ГУГГЕНБЕРГЕРА РЫЧАЖНЫЙ

На стальном образце 1 прямоугольного поперечного сечения (рис. 2), закрепленном в захватах 2 машины УМ-5, установлены попарно (для увеличения точности измерений) рычажные тензометры Гуггенбергера: 3 – для измерения продольных деформаций, 4 – для измерения поперечных деформаций.

Рычажныйтензометр(рис. 3)устанавливаетсянаобразец 1 с помощью специальной струбцины и опирается на него двумя ножами – неподвижным 2 и подвижным3, выполненными в виде призмы.


Рис. 2. Схема закреплениятензометров на образцеРис. 3. Схема рычажного тензометра

Расстояние l 0 между ножами называется базой тензометра (минимальная - 20 мм, но с помощью удлинителей база может быть увеличена до 100 мм). При деформации образца расстояние между ножами изменяется. Подвижный нож 3 повернется и отклонит рычаг 4. Отклонение рычага 4 через тягу 5 передается на стрелку 6, которая повернется вокруг оси, закрепленной на рамке 7. Перемещение стрелки по шкале 8 пропорционально изменению расстояния между ножами.

Шкала 8 тензометра проградуирована в миллиметрах. Отношение отсчетапошкалекизменениюрасстояниямеждуножаминазывают коэффициентом увеличения тензометра K , величина которого определяется соотношением

где - размеры плеч рычагов тензометра (рис. 3).

Значение его для каждого тензометра указывается в паспорте.

Для повышения точности определения искомых упругих характеристик образец необходимо нагрузить ступенями 3-4 раза. Наибольшую нагрузку на образец можноопределить по величине предела пропорциональности или предела текучести материала по формуле:

Тогда при числе ступеней нагружений m величина ступени нагружения

III . ВЫПОЛНЕНИЕ ЭКСПЕРИМЕНТА И ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

1. Штангенциркулем измеряют поперечные размеры образца b и h с точностью 0,1 мм. По формулам (4) и (5) определяют величину ступени нагружения и число опытов m и записывают эти данные в журнал наблюдений.

2. Нагружают образец предварительной нагрузкой и устанавливают стрелки 6 (рис. 2) всех четырех тензометров в исходное положение. Величину этой нагрузки и показания тензометров принимают за исходные и записывают в журнал наблюдений.

3. Нагружают образец равными ступенями и записывают соответствующие показания всех тензометров . Вычисляют среднее значение приращений показаний двух тензометров 3 для измерения продольных деформаций и двух тензометров 4 – для измерения поперечных деформаций по формулам соответственно:

где m - число ступеней нагружения .

После этого вычисляют опытные значения абсолютных продольных и поперечных деформаций

где K - коэффициент увеличения тензометра.

4. Подставив значение в формулу(3), определяют опытное значение модуля продольной упругости E . Затем, подставив значения и в формулу с учетом формулы , получают опытное значение коэффициента Пуассона .

5. Проводят анализ результатов опыта.

Форма отчета по лабораторной работе

1. Название лабораторной работы.

2. Цель лабораторной работы.

3. Испытательная машина.

4. Исходные данные.

4.1. Поперечное сечение образца: ширина b , высота h , площадь поперечного сечения A .

4.2. База тензометров:

для измерения продольных деформаций l 0 ;

для измерения поперечных деформаций b 0 .

4.3. Коэффициент увеличения тензометра K .

4.4. Табличные значения:

Модуль продольной упругости для стали E ;

Коэффициент Пуассона для стали .

F

Приращение

нагрузки

Продольнаядеформация

Поперечнаядеформация

I тензом.

II тензом.

I тензом.

II тензом.

Средние значения работа? Какой используется образец?

Как устроен рычажный тензометр? Что им измеряют? Что такое коэффициент увеличения тензометра?

Что называют базой рычажного тензометра?

С какой целью к образцу прикладывают начальную нагрузку?

Что такое ступень нагружения?

Как вычисляют коэффициент увеличения тензометра?

Как определяется наибольшая нагрузка, прикладываемая к образцу?

Что собой представляет центральное растяжение - сжатие?

Напишите формулу для определения нормальных напряжений при центральном растяжении.

Как записывается формула абсолютного удлинения бруса при растяжении? Что такое жесткость сечения бруса при растяжении?

Что происходит с поперечными размерами бруса при его растяжении в продольном направлении?

Что собой представляет относительная линейная деформация?

Что представляют собой относительная продольная и попереч­ная деформации?

Что такое коэффициент Пуассона? Каковы пределы его изменения?

Какие свойства материала характеризует коэффициент Пуассона?

Напишите закон Гука при растяжении (сжатии). Связь каких величин отражает закон Гука?

Что такое изотропия материалов?

Какие упругие постоянные характеризуют изотропные материалы?

Сколько линейно независимых упругих постоянных имеют изотропные материалы?

Как можно характеризовать сталь по её монокристаллическому и поликристаллическому строению?

Какие свойства материала характеризует модуль Юнга?

Как записывают закон Гука при растяжении или сжатии в дифференциальной форме?

Как находят модуль Юнга?

Как вычисляют напряжение при растяжении?

Как определяют относительную продольную деформацию опытным путём?

Что представляют собой модуль упругости Е ? Каков его физический смысл?

Какие размерности имеют упругие постоянные Е и ?

Как найти из эксперимента величины относительных линей ных деформаций в продольном и поперечном направлениях?

абсолютной линейной деформациив продольномнаправле­ нии?

Можно ли определить из проведенных испытаний величину абсолютной линейной деформации в поперечном направлении?

Какие свойства материала характеризует модуль сдвига?

Как записывают закон Гука при сдвиге в дифференциальной форме?

Какая зависимость существует между упругими постоянными изотропного материала?

Какие средние значения имеют упругие постоянные стали?

С какой целью соединяют последовательно датчики, наклеенные на противоположных гранях образца?

Какие деформации могут внести существенные погрешности в результате опыта?

email:

ЛАБОРАТОРНАЯ РАБОТА №9

Определение модуля упругости (модуля Юнга) по деформации изгиба

Цель работы: определение модуля упругости (модуля Юнга) по деформации изгиба стержней прямоугольного сечения.

КРАТКАЯ ТЕОРИЯ

Деформация изгиба возникает тогда, когда к стержню, один конец которого закреплен (рис.1а ) или к стержню, свободно лежащему на опорах (рис.1б ) приложена сила, перпендикулярная к его оси. И в том и в другом случае стержень изгибается и характеристикой этой деформации может служить стрела прогиба .

Во введении к данному циклу работ было показано, что деформация изгиба представляет собой неоднородную деформацию растяжения-сжатия. Там же было получены выражения (формулы (12)и (13) введения) для определения стрел прогиба для обеих ситуаций, приведенных на рис.1.

В данной лабораторной работе будет исследоваться изгиб стержня прямоугольного сечения, свободно лежащего на опорах (рис.1б ). В этом случае стрела прогиба определяется соотношением

где L - длина стержня, Е – модуль Юнга материала стержня, Р – сила, действующая на середину стержня. Величина I определяется только формой сечения стержня и рассчитывается по формуле

. (2)

Величины, входящие в эту формулу, поясняются на рис.2. Буквой О обозначен центр масс сечения стержня. Через него проходит нейтральный слой, который не испытывает деформации сжатия-растяжения.

В данной работе используется стержень прямоугольного сечения (рис.3) Очевидно, что в этом случае центр масс сечения совпадает с его геометрическим центром и, следовательно, b 1= b 2= b /2 . Здесь b – размер стержня в направлении действия нагрузки, иначе говоря, толщина стержня. Кроме того, очевидно, что величина а не зависит от х (стержень имеет постоянную ширину. Теперь интеграл (2) вычисляется просто:

(3)

Подставляя полученное выражение в (1), получаем

или , где (4)

Выражение (4) подсказывает следующий метод определения модуля Юнга. Надо получить экспериментальную зависимость стрелы прогиба от нагрузки Р и определить тем или иным способом коэффициент пропорциональности А . Далее, проведя измерения геометрических размеров стержня, рассчитать Е.

МЕТОДИКА ЭКСПЕРИМЕНТА

Установка для определения экспериментальной зависимости стрелы прогиба от нагрузки состоит из двух стоек со стальными призмами, на которых располагается стержень прямоугольного сечения из исследуемого материала. Грузы, вес которых определяется на технических весах, подвешиваются к стремени, которое помещают на одинаковом расстоянии от стоек. Стрела прогиба измеряется с помощью микрометра, установленного вертикально над стержнем в месте расположения стремени. Контакт острия на стебле микрометра со стержнем фиксируется световым индикатором.

Предварительно измеряются геометрические параметры установки, т.е. величины L , a и b после чего исследуемый стержень размещается на опорах.

Далее необходимо убедиться, будут ли деформации стержня, возникающие в наших экспериментах, упругими, поскольку только в этом случае для вычисления модуля Юнга справедлива формула (1). Для выяснения этого обстоятельства используется следующая процедура. Микрометрический винт приводится в контакт со стержнем и производится отсчет показаний микрометра. Используя все имеющиеся грузы, создается максимально возможная (для данной работы) нагрузка стержня. Затем грузы снимаются, микровинт вновь приводится в контакт со стержнем и вновь производится отсчет показаний микрометра. Если показания микрометра до и после нагружения стержня совпадают в пределах погрешности измерений, можно говорить, что форма стержня восстановилась и, тем самым, утверждать, что при проведении экспериментов возникающие деформации будут упругими.

Стрела прогиба в данной установке определяется как разность показаний микрометра до нагружения стержня n0 и при нагрузке стержня n , т.е. =n0 –n , а нагрузка рассчитывается по формуле Р=mg . Используя эти соотношения можно несколько изменить формулы (4) так, чтобы в них входили результаты прямых измерений

или = n 0 – n = B m , где . (5)

Определив коэффициент пропорциональности В по экспериментальной зависимости стрелы прогиба от массы груза теперь нетрудно рассчитать значение модуля Юнга.

Экспериментальная зависимость от m при увеличении нагрузки снимается следующим образом. В отсутствие нагрузки отсчитывается показание микрометра n 0 . Подвешивается груз массой m 1 и отсчитывается показание микрометра n 1 . Очевидно, 1 = n 0 – n 1 . Добавляется груз массой m 2 . Суммарная масса нагрузки будет составлять m 1+ m 2 . Отсчитывается показание микрометра n 2 , определяется 2 . Добавляется следующий груз и т.д.

Аналогичным образом определяется экспериментальная зависимость от m при разгрузке. Отсчитывается показание микрометра при максимальной подвешенной массе, убирается один груз, вновь отсчитывается показание микрометра и так до тех пор, пока не будут сняты все грузы. В отсутствии нагрузки определяется новое значение n 0 .

ВЫПОЛНЕНИЕ РАБОТЫ И УСЛОВИЯ ЭКСПЕРИМЕНТА

    в отсутствие нагрузке привести в контакт со стержнем стебель микрометра, произвести отсчет показания микрометра n 0 ;

    взвесить одну из гирь и подвесить ее к стремени. Вращением головки микрометра восстановить контакт острия стебля микрометра со стержнем. Определить новое показание микрометра;

    последовательно добавлять к подвешенным гирям остальные, предварительно взвешивая их. После подвешивания очередной гири восстанавливать контакт острия стебля микрометра со стержнем и отсчитывать показания микрометра;

    результаты измерений занести в таблицу, вид которой приведен ниже, рассчитать погрешность определения стрелы прогиба, построить график экспериментальной зависимости от m при нагружении стержня.

п/п

m, кг

n , мм

, мм

 , мм

1 = n0-n1

2 = n0-n2

k = n0-n2

    Снять зависимость величины прогиба от массы груза при разгрузке стержня. Для этого

    подвесить максимальный груз, произвести отсчет показаний микрометра;

    вывести стебель микрометра из контакта со стержнем, снять одну гирю, вновь привести стебель микрометра в контакт со стержнем, произвести отсчет показания микрометра;

    повторять предыдущий пункт, последовательно снимая гири;

    сняв последнюю гирю, снова определить величину n 0 ;

    результаты измерений занести в таблицу, аналогичную вышеприведенной (ее удобно заполнять снизу вверх), рассчитать погрешность определения стрелы прогиба, построить график экспериментальной зависимости от m при разгрузке стержня.

    По результаты измерений методом наименьших квадратов определить значения коэффициента В и рассчитать величины модуля Юнга при нагружении и разгрузке стержня.

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Измерения геометрических размеров стержня являются прямыми измерениями, поэтому погрешности величин а ,b и L определяются стандартными методами обработки прямых измерений. Прямыми являются и измерения массы. Однако при этом будем считать, что случайная погрешность определения массы много меньше систематической, так что полная погрешность определения массы равна систематической погрешности, составляющей .

Стрела прогиба определяется косвенным образом по формуле =n0 –n , где n0 и n , прямые измерения, производимые по микрометру с точностью 0,01мм . Погрешность  определяется по формуле . Очевидно, что n 0= n = 0,01мм , так что = 0,014мм . Итак, абсолютная погрешность измерения стрелы прогиба во всех опытах будет одинакова и равна 0,014мм .

Согласно формуле (5) существует линейная связь между стрелой прогиба и массой груза, т.е. m . Коэффициент В по данным эксперимента можно было бы определить так. Каждый опыт дает определенное значение B i :

Вi = i / m i , (7)

где i и mi - значения величин и m , полученные в i -том опыте. Индекс i у величины B показывает, что это значение соответствует i -тому опыту. Из значений B i можно образовать среднее

Здесь следует отметить, что это простой, но не самый лучший способ определения B . В самом деле, m есть величина, характеризующая условия опыта, которую мы знаем практически точно, а есть результат опыта, известный с погрешностью. Погрешность  одинакова во всех измерениях. Тогда ошибка в величине B , равная i /mi , тем больше, чем меньше mi . Иначе можно сказать, что значение B , вычисленное по формуле (8), не является наилучшей оценкой истинного B . Это является следствием того, что величины B i неравноточные.

Строго задача о нахождении наилучшей оценки истинного значения B по данным эксперимента и известной зависимости типа Y=aX (в данном случае =B m ) ставится так. Необходимо найти такое значение B , при котором функция =B m наилучшим образом соответствует опытным данным (смысл нечеткого выражения "наилучшим образом" станет ясным из дальнейшего).

Выберем за меру отклонения функции от экспериментальных данных для i -го опыта величину (i-Bmi)2 . Если бы за меру отклонения была взята просто величина i-Bmi , то сумма отклонений в нескольких опытах могла бы оказаться весьма малой за счет взаимного уничтожения отдельных слагаемых большой величины, но имеющих разные знаки. Это, однако, вовсе не говорило бы о том, что функция =Bm хороша. Очевидно, что такого взаимного уничтожения не будет, если мера отклонения выбрана в виде (i-Bmi)2 .

Итак, в качестве меры общего отклонения S в описании опытных данных функцией =Bm необходимо взять сумму мер отклонений для всех опытов, то есть:

. (9)

Таким образом, наша функция будет наилучшим способом описывать опытные данные, если S , то есть сумма квадратов отдельных отклонений, минимальна. Метод определения констант, входящих в формулу, из требования минимальности S , называется методом наименьших квадратов.

Величина S является функцией B , т.е. S=S(B) . Чтобы найти такое значение B, которое доставляет минимум функции S (наилучшее значение B ), необходимо, как известно, решить уравнение dS/dB=0 . Используя (9), получаем:

что дает . (10)

Итак, подставляя в формулу (10) экспериментальные значения mi и i , рассчитывается значение величина, являющееся наилучшей оценкой истинного B . Среднеквадратичное отклонение определяется по формуле:

. (11)

Для расчета доверительного интервала о B выбирается доверительная вероятность и определяется коэффициент Стьюдента t ,k-1 , т.е. для числа на единицу меньше числа проделанных опытов. Тогда, как обычно, о B=t ,k-1SB .

Методом наименьших квадратов следует обработать экспериментальные точки, полученные как при нагружении стержня, так и при его разгрузке. Следует также на экспериментальных графиках провести "наилучшие" прямые, используя значение рассчитанные значения В .

После расчета коэффициента пропорциональности В можно рассчитать по формуле (6) значение модуля Юнга. Погрешности, входящих в эту формулу величин, известны. Естественно, что значения этих погрешностей определяют и погрешность определения величины E . Величина E является результатом косвенного измерения. Значение E определяется по формуле погрешности косвенных измерений. Предполагая при этом, g =0 , можно записать:

Взяв производные и поделив обе части (12) на величину E= g L3/4ab3 B , получим выражение, которое удобно использовать для расчета погрешности

. (13)

Подставляя в формулу (6) вначале случайные, а затем систематические погрешности, можно определить соответственно случайную и систематическую (С Е ) погрешности измерения модуля Юнга. Полная погрешность единичного измерения модуля Юнга определяется по формуле.Таким образом, будут получены два значения модуля Юнга (из экспериментов при нагружении и разгрузке стержня). Их надо сравнить друг с другом и с табличными значениями.

КОНТРОЛЬНЫЕ ВОПРОСЫ

    Что такое механическое напряжение и относительная деформация? Какова связь между ними (на примере деформации сжатия-растяжения)? Что такое механическое напряжение и относительная деформация с молекулярной точки зрения?

    В чем состоит закон Гука? Каков физический смысл модуля Юнга, модуля сдвига? Что такое коэффициент Пуассона?

    Почему модуль Юнга может быть определен из наблюдений деформаций изгиба?

    Каковы основные этапы вывода формулы (1)? Что такое «момент инерции сечения» I ?

    Определите относительную погрешность величины A , вычисляемой по формуле A=B-C , если B=100, C=99 и относительные погрешности их определения составляют 1%.

Все твердые тела, как кристаллические, так и аморфные, имеют свойство изменять свою форму под воздействие приложенной к ним силы. Другими словами, они подвергаются деформации. Если тело возвращается к исходным размерам и форме после того, как внешнее усилие прекращает свое воздействие, то его называют упругим, а его деформацию считают упругой. Для любого тела существует предел приложенного усилия, после которого деформация перестает быть упругой, тело не возвращается в исходную форму и к исходным размерам, а остается в деформированном состоянии или разрушается. Теория упругих деформаций тел была создана в конце 17 века британским ученым Р. Гуком и развита в трудах его соотечественника Томаса Юнга. В их честь Гука и Юнга были названы соответственно закон и коэффициент, определяющий степень упругости тел. Он активно применяется в инженерном деле в ходе расчетов прочности конструкций и изделий.

Основные сведения

Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м 2 или в Па.

Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (10 12 Па)

Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.

Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.

E- это частное от деления нормальных напряжений σ на относительное удлинение ε.

Закон Гука также можно сформулировать и с использованием модуля Юнга.

Физический смысл модуля Юнга

Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.

Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.

Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.

В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:

Δl = α * (lF) / S

Величину, обратную α, и называют модулем Юнга:

Относительная деформация:

ε = (Δl) / l = α * (F/S)

Отношение растягивающей силы F к S называют упругим напряжением σ:

Закон Гука, записанный с использованием модуля Юнга, выглядит так:

σ = ε/α = E ε

Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.

В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.

Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l

Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.

Значения модуля юнга для некоторых материалов

В таблице показаны значения E ряда распространенных веществ.

Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.

Предел прочности материала

Это предел возникающего напряжения, после которого образец начинает разрушаться.

Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.

Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Значения σ раст в МПа:

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Коэффициент запаса прочности

Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.

Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.

Связь с другими модулями упругости

Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением:

E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.