Цезий нахождение в природе. Цезий применение

Цезий был открыт в 1860 году Бунзеном в воде Дюркгаймерского минерального источника на основании присущих ему спектров. В соответствии с этим он был так и назван - по двум характерным синим линиям спектра (caesius - сине-серый). Получение металлического цезия удалось впервые осуществить Сеттербергу (Setterberg, 1882) электролизом расплавленной смеси цианидов цезия и бария. К этому времени Бунзеном уже была получена амальгама цезия.

Получение:

Получение цезия лучше всего вести нагреванием гидроксида с металлическим магнием в токе водорода или с металлическим кальцием в вакууме. Согласно де Буру, в качестве восстановителя особенно подходит цирконий. Небольшие количества цезия, по де Буру, удобно получать нагреванием его хлорида в смеси с азидом бария в высоком вакууме. Образующийся при распаде азида барий восстанавливает щелочные металлы из их хлоридов. Они испаряются и оседают на холодных стенках сосуда.

Физические свойства:

Цезий в чистом состоянии имеет по данным Костеану золотисто-желтый цвет. На воздухе тускнеет и вскоре покрывается толстой гидроксидной коркой. Поэтому его следует хранить под слоем керосина или парафинового масла. Как и все щелочные металлы, цезий чрезвычайно мягок (как воск) и легко поддается сжатию. Тпл.= 28,4°С. Обладает высокой электропроводностью.

Химические свойства:

Цезий - щелочной металл, он тотчас воспламеняется при доступе кислорода с образованием твердого пероксида CsO 2 даже в отсутствие воды, в то время, как другие щелочные металлы (за исключением рубидия) на сухом воздухе или в токе кислорода воспламеняются только при умеренном нагревании. Цезий воспламеняется также при взаимодействии с галогенами (с бромом реакция идет со взрывом), фосфором и серой.
Цезий очень активно разлагает воду. При этом он плавится, а выделяющийся водород воспламеняется. Со спиртом цезий реагирует с образованием алкоголята:
2Cs + 2HOC 2 H 5 = 2CsOC 2 H 5 + H 2
В соединениях проявляет степень окисления +1.

Важнейшие соединения:

Оксид цезия. Для цезия известен ряд соединений с кислородом Cs 7 O, Cs 4 O (?), Cs 7 O 2 , Cs 3 O, Cs 2 O. Существование этих своеобразных соединений было установлено уже в 1909 г. Ренгаде. Оксид цезия оранжевый, может быть получен взаимодействием пероксида со стехиометрическим количеством металла. Энергично взаимодействует с водой. При слабом нагревании реагирует с водородом с образованием гидроксида и гидрида:
Cs 2 O + H 2 = CsOH + CsH
Надпероксид цезия CsO 2 , желтого цвета, образуется при горении цезия в токе кислорода. При сильном нагревании надпероксид цезия отщепляет кислород, переходя в черную Cs 2 O 3 . Взаимодействие надпероксида с водой приводит к образованию пероксида водорода и кислорода.
Существует и красный озонид цезия CsO 3 .
Гидроксид цезия CsOH, бесцв. крист., щелочь. Получают электролизом расторов солей цезия, взаимодействием сульфата цезия с гидроксидом бария.
Соли цезия похожи на соответствующие соли калия. Поскольку для получения солей цезия используются главным образом остаточные щелока от переработки калийных солей главная задача заключается в том, чтобы отделить его от калия.
Хлорид цезия получают взаимодействием карбонатов с соляной кислотой или прокаливанием хлороплатинатов. Хлорид цезия кристаллизуется в виде кубов. Заметно ядовит. Цезий, как и рубидий, склонен к образованию полигалогенидов.
Карбонат цезия удобнее всего получать взаимодействием сульфатов с гидроксидом бария и последующим упариванием с карбонатом аммония. Карбонат цезия легко растворим в спирте. Гидрокарбонат цезия растворим лучше, чем гидрокарбонат калия.
Сульфат цезия образует ромбические кристаллы, изоморфные сульфату калия. Легко образует двойные соли с сульфатом алюминия, сульфатом железа(III) и с сульфатами двухвалентных металлов.

Применение:

Металлический цезий используется в фотоэлементах, газовых лазерах, цезиевых лампах. Многие соли цезия используются в составе электролитов топливных элементов. В аналитической и препаративной химии применяют хлорид цезия для получения чистых двойных хлоридов с хлоридами тяжелых металлов; полученные таким образом двойные соли отличаются большей частью плохой растворимостью и способностью хорошо кристаллизоваться. Для обнаружения алюминия применяется образование цезиевых квасцов: CsAl(SO 4) 2 *12H 2 O.
Мировое производство (без СССР) - около 10 т/год (1979).

Самоволова Ю.

См. также:
С.И. Венецкий О редких и рассеянных. Рассказы о металлах.

Если бы писателю-беллетристу пришлось заняться «биографией» цезия, то он, может быть, начал так: «Открыт цезий сравнительно недавно, в 1860 г., в минеральных водах известных целебных источников Шварцвальда (Баден-Баден и др.). За короткий исторический срок прошел блистательный путь – от редкого, никому не ведомого химического элемента до стратегического металла. Принадлежит к трудовой семье щелочных металлов, по в жилах его течет голубая кровь последнего в роде... Впрочем, это нисколько не мешает ему общаться с другими элементами и даже, если они не столь знамениты, он охотно вступает с ними в контакты и завязывает прочные связи. В настоящее время работает одновременно в нескольких отраслях: в электронике и автоматике, в радиолокации и кино, в атомных реакторах и на космических кораблях...».

Не принимая всерьез шутливого топа и некоторых явно литературных преувеличений, это жизнеописание можно смело принять за «роман без вранья». Не беспредметен разговор о «голубой крови» цезия – впервые он был обнаружен по двум ярким линиям в синей области спектра и латинское слово «caesius», от которого произошло его название, означает небесно-голубой. Неоспоримо утверждение о том, что цезий практически последний в ряду щелочных металлов. Правда, еще Менделеев предусмотрительно оставил в своей таблице пустую клетку для «экацезия», который должен был следовать в I группе за цезием. И этот элемент (франций) в 1939 г. был открыт. Однако франций существует лишь в виде быстро распадающихся радиоактивных изотопов с периодами полураспада в несколько минут, секунд или даже тысячных долей секунды. Наконец, правда и то, что цезий применяется в некоторых важнейших областях современной техники и науки.

Распространенность цезия в природе и его производство

В литературе нет точных данных о том, сколько цезия имеется на земном шаре. Известно лишь, что он относится к числу редких химических элементов. Полагают, что его содержание в земной коре во всяком случае в несколько сот раз меньше, чем рубидия, и не превышает 7·10 –4 %.

Цезий встречается в крайне рассеянном состоянии (порядка тысячных долей процента) во многих горных породах; ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах, главным образом в лепидолите. Но особенно существенно то, что, в отличие от рубидия и большинства других редких элементов, цезий образует собственные минералы – поллуцит, авогадрит и родицит. Родицит крайне редок, притом некоторые авторы причисляют его к литиевым минералам, так как в его состав (R 2 O · 2Al 2 O 3 · 3B 2 O 3 , где R 2 O – сумма окисей щелочных металлов) входит обычно больше лития, чем цезия. Авогадрит (K, Cs) тоже редок, да и поллуциты встречаются нечасто; их залежи маломощны, зато цезия они содержат не менее 20, а иногда и до 35%. Наибольшее практическое значение имеют поллуциты США (Южная Дакота и Мэн), Юго-Западной Африки, Швеции и Советского Союза (Казахстан и др.).

Поллуциты – это алюмосиликаты, сложные и весьма прочные соединения. Их состав определяют формулой (Cs, Na) · n H 2 O, и хотя цезия в них много, извлечь его не так просто. Чтобы «вскрыть» минерал и перевести в растворимую форму ценные компоненты, его обрабатывают при нагревании концентрированными минеральными кислотами – плавиковой или соляной и серной. Затем освобождают раствор от всех тяжелых и легких металлов и, что особенно трудно, от постоянных спутников цезия – щелочных металлов: калия, натрия и рубидия.

Современные методы извлечения цезия из поллуцитов основаны на предварительном сплавлении концентратов с избытком извести и небольшим количеством плавикового шпата. Если вести процесс при 1200°C, то почти весь цезий возгоняется в виде окиси Cs 2 O. Этот возгон, конечно, загрязнен примесью других щелочных металлов, но он растворим в минеральных кислотах, что упрощает дальнейшие операции.

Из лепидолитов цезий извлекается вместе с рубидием попутно, как побочный продукт производства лития. Лепидолиты предварительно сплавляют (или спекают) при температуре около 1000°C с гипсом или сульфатом калия и карбонатом бария. В этих условиях все щелочные металлы превращаются в легкорастворимые соединения – их можно выщелачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция – отделение цезия от рубидия и громадного избытка калия. В результате ее получают какую-либо соль цезия – хлорид, сульфат или карбонат. Но это еще только часть дела, так как цезиевую соль надо превратить в металлический цезий. Чтобы понять всю сложность последнего этапа, достаточно указать, что первооткрывателю цезия – крупнейшему немецкому химику Бунзену – так и не удалось получить элемент №55 в свободном состоянии. Все способы, пригодные для восстановления других металлов, не давали желаемых результатов. Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4:1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности, да и выход цезия был весьма мал. Вол ее рациональный способ найден в 1890 г. известным русским химиком Н.Н. Бекетовым, предложившим восстанавливать гидроокись цезия металлическим магнием в токе водорода при повышенной температуре. Водород заполняет прибор и препятствует окислению цезия, который отгоняется в специальный приемник. Однако и в этом случае выход цезия не превышает 50% теоретического.

Наилучшее решение трудной задачи получения металлического цезия было найдено в 1911 г. французским химиком Акспилем. При методе Акспиля, до сих пор остающемся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме, причем реакция

2CsCl + Ca → CaCl 2 + 2Cs

идет практически до конца. Процесс ведут в специальном приборе (в лабораторных условиях – из кварца или тугоплавкого стекла), снабженном отростком. Если давление в приборе не больше 0,001 мм рт. ст., температура процесса может не превышать 675°C. Выделяющийся цезий испаряется и отгоняется в отросток, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления CaCl 2 равна 773°C, т.е. на 100°C выше температуры процесса). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.

В литературе описаны еще многие другие способы получения металлического цезия из его соединений, но, как правило, они не сулят особых преимуществ. Так, при замене металлического кальция его карбидом температуру реакции приходится повышать до 800°C, и конечный продукт загрязняется дополнительными примесями. Можно разлагать азид цезия или восстанавливать цирконием его бихромат, но эти реакции взрывоопасны. Впрочем, при замене бихромата хроматом цезия процесс восстановления протекает спокойно, и, хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств металла в специальном вакуумном приборе.

Мировое производство цезия сравнительно невелико, но в последнее время оно постоянно растет. О масштабах этого роста можно только догадываться – цифры не публикуются.

Свойства цезия

Блестящая поверхность металлического цезия имеет бледно-золотистый цвет. Это – один из самых легкоплавких металлов: он плавится при 28,5°C, кипит при 705°C в обычных условиях и при 330°C в вакууме. Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу (132,905) элемента, его плотность при 20°C всего 1,87. Цезий во много раз легче своих соседей по менделеевской таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, а их атомные массы относятся, как 6:1. По-видимому, причина этого кроется в своеобразной электронной структуре атомов цезия. Каждый его атом содержит 55 протонов, 78 нейтронов и 55 электронов, но все эти многочисленные электроны расположены относительно рыхло – ионный радиус цезия очень велик – 1,65 Å*. Ионный радиус лантана, например, равен всего 1,22 Å, хотя в состав его атома входят 57 протонов, 82 нейтрона и 57 электронов.

* Атомный радиус цезия равен 2,62 Å.

Самое замечательное свойство цезия – его исключительно высокая активность. По чувствительности к свету он превосходит все другие металлы. Цезиевый катод испускает поток электронов даже под действием инфракрасных лучей с длиной волны 0,80 мкм. Кроме того, максимальная электронная эмиссия, превосходящая нормальный фотоэлектрический эффект в сотни раз, наступает у цезия при освещении зеленым светом, тогда как у других светочувствительных металлов этот максимум проявляется лишь при воздействии фиолетовых или ультрафиолетовых лучей.

Долгое время ученые надеялись найти радиоактивные изотопы цезия в природе, поскольку они есть у рубидия и калия. Но в природном цезии не удалось обнаружить каких-либо иных изотопов, кроме вполне стабильного 133 Cs. Правда, искусственным путем получено 22 радиоактивных изотопа цезия с атомными массами от 123 до 144. В большинстве случаев они недолговечны: периоды полураспада измеряются секундами и минутами, реже – несколькими часами или днями. Однако три из них распадаются не столь быстро – это 134 Cs, 137 Cs и 135 Cs, живущие 2,07; 26,6 и 3·10 6 лет. Все три изотопа образуются в атомных реакторах при распаде урана, тория и плутония; их удаление из реакторов довольно затруднительно.

Химическая активность цезия необычайна. Он очень быстро реагирует с кислородом и не только моментально воспламеняется на воздухе, но способен поглощать малейшие следы кислорода в условиях глубокого вакуума. Воду он бурно разлагает уже при обычной температуре; при этом выделяется много тепла, и вытесняемый из воды водород тут же воспламеняется. Цезий взаимодействует даже со льдом при –116°C. Его хранение требует большой предосторожности.

Цезий взаимодействует и с углеродом. Только самая совершенная модификация углерода – алмаз – в состоянии противостоять его «натиску». Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит, внедряясь между атомами углерода и образуя своеобразные, довольно прочные соединения золотисто-желтого цвета, которые в пределе, по-видимому, отвечают составу C 8 Cs 5 . Они воспламеняются на воздухе, вытесняют водород из воды, а при нагревании разлагаются и отдают весь поглощенный цезий.

Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором – взрывом. При нагревании цезий соединяется с водородом, азотом и другими элементами, а при 300°C разрушает стекло и фарфор. Гидриды и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием, а также с окисью углерода. Галоидные соединения цезия и цезиевые соли большинства кислот, напротив, очень прочны и устойчивы. Активность исходного цезия проявляется у них разве только в хорошей растворимости подавляющего большинства солей. Кроме того, они легко превращаются в более сложные комплексные соединения.

Сплавы и интерметаллические соединения цезия всегда сравнительно легкоплавки.

У цезия имеется еще одно весьма важное свойство, тесно связанное с его электронной структурой. Дело в том, что он теряет свой единственный валентный электрон легче, чем любой другой металл; для этого необходима очень незначительная энергия – всего 3,89 эВ. Поэтому получение плазмы из цезия требует гораздо меньших энергетических затрат, чем при использовании любого другого химического элемента.

Где применяется цезий

Неудивительно, что замечательные свойства цезия давно открыли ему доступ в различные сферы человеческой деятельности.

Прежде всего он нашел применение в радиотехнике. Вакуумные фотоэлементы со сложным серебряно-цезиевым фотокатодом особенно ценны для радиолокации: они чувствительны не только к видимому свету, но и к невидимым инфракрасным лучам и, в отличие, например, от селеновых, работают без инерции. В телевидении и звуковом кино широко распространены вакуумные сурьмяно-цезиевые фотоэлементы; их чувствительность даже после 250 часов работы падает всего на 5...6%, они надежно работают в интервале температур от –30° до +90°C. Из них составляют так называемые многокаскадные фотоэлементы; в этом случае под действием электронов, вызванных лучами света в одном из катодов, наступает вторичная эмиссия – электроны испускаются добавочными фотокатодами прибора. В результате общий электрический ток, возникающий в фотоэлементе, многократно усиливается. Усиление тока и повышение чувствительности достигаются также в цезиевых фотоэлементах, заполненных инертным газом (аргоном или неоном).

В оптике и электротехнике широко используются бромиды, иодиды и некоторые другие соли цезия. Если при изготовлении флуоресцирующих экранов для телевизоров и научной аппаратуры ввести между кристалликами сернистого цинка примерно 20% иодистого цезия, экраны будут лучше поглощать рентгеновские лучи и ярче светиться при облучении электронным пучком.

На проходившей в 1965 г. в Москве Международной выставке «Химия-65» в павильоне СССР демонстрировались сцинтилляционные приборы с монокристаллами иодида цезия, активированного таллием. Эти приборы, предназначенные для регистрации тяжелых заряженных частиц, обладают наибольшей чувствительностью из всех приборов подобного назначения.

Кристаллы бромистого и иодистого цезия прозрачны для инфракрасных лучей с длиной волны от 15 до 30 мкм (CsBr) и от 24 до 54 мкм (CsI). Обычные призмы из хлористого натрия пропускают только лучи с длиной волны 14 мкм, а из хлористого калия – 25 мкм. Поэтому применение бромистого и иодистого цезия сделало возможным снятие спектров сложных молекул в отдаленной инфракрасной области.

Весьма чувствительны к свету соединения цезия с оловянной кислотой (ортостаннаты) и с окисью циркония (метацирконаты). Изготовленные на их основе люминесцентные трубки при облучении ультрафиолетовыми лучами или электронами дают зеленую люминесценцию.

Активность многих соединений цезия проявляется в их каталитической способности. Установлено, что при получении синтола (синтетической нефти) из водяного газа и стирола из этилбензола, а также при некоторых других синтезах добавление к катализатору незначительного количества окиси цезия (вместо окиси калия) повышает выход конечного продукта и улучшает условия процесса. Гидроокись цезия служит превосходным катализатором синтеза муравьиной кислоты. С этим катализатором реакция идет при 300°C без высокого давления. Выход конечного продукта очень велик – 91,5%. Металлический цезий лучше, чем другие щелочные металлы, ускоряет реакцию гидрогенизации ароматических углеводородов.

В целом же каталитические свойства цезия изучались мало и его положительное действие оценивалось скорее качественно, чем количественно. Вероятно, это можно объяснить недостаточной актуальностью вопроса, поскольку на цезий имеется настоятельный спрос в ряде других весьма важных областей. К числу последних относится, в частности, медицина. Изотопом 137 Cs, образующимся во всех атомных реакторах (в среднем из 100 ядер урана 6 ядер 137 Cs), заинтересовались специалисты в области рентгенотерапии. Этот изотоп разлагается сравнительно медленно, теряя за год только 2,4% своей исходной активности. Он оказался пригодным для лечения злокачественных опухолей и имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада (26,6 года против 5,27) и в четыре раза менее жесткое гамма-излучение. В связи с этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Впрочем, эти преимущества становятся реальными лишь при условии абсолютной радиохимической чистоты 137 Cs, отсутствия в нем примеси 134 Cs, имеющего более короткий период полураспада и более жесткое гамма-излучение.

Не только радиоактивный, но и стабильный металлический цезий приобретает все большее значение. Он служит для изготовления специальных выпрямителей, во многих отношениях превосходящих ртутные. В военном и военно-морском деле вакуумные лампы с парами цезия применяются для инфракрасной сигнализации и контроля. В США такого рода прибор, способный обнаружить в темноте всевозможные объекты, называют «снайперскопом».

Но особенно большое внимание уделяется в последнее время цезиевой плазме, всестороннему изучению ее свойств и условий образования. Возможно, она станет «топливом» плазменных двигателей будущего. Кроме того, работы по исследованию цезиевой плазмы тесно связаны с проблемой управляемого термоядерного синтеза. Многие ученые считают, что целесообразно создавать цезиевую плазму, используя высокотемпературную тепловую энергию атомных реакторов, то есть непосредственно превращать эту тепловую энергию в электрическую.

Таков далеко не полный перечень возможностей цезия.

Вскоре после открытия

Цезий, как известно, был первым элементом, открытым с помощью спектрального анализа. Ученые, однако, имели возможность познакомиться с этим элементом еще до того, как Бунзен и Кирхгоф создали новый исследовательский метод. В 1846 г. немецкий химик Платтнер, анализируя минерал поллуцит, обнаружил, что сумма известных его компонентов составляет лишь 93%, но не сумел точно установить, какой еще элемент (или элементы) входит в этот минерал. Лишь в 1864 г., уже после открытия Бунзена, итальянец Пизани нашел цезий в поллуците и установил, что именно соединения этого элемента не смог идентифицировать Платтнер.

Цезий и давление

Все щелочные металлы сильно изменяются под действием высокого давления. Но именно цезий реагирует на него наиболее своеобразно и резко. При давлении в 100 тыс. атм. его объем уменьшается почти втрое – сильнее, чем у других щелочных металлов. Кроме того, именно в условиях высокого давления были обнаружены две новые модификации элементарного цезия. Электрическое сопротивление всех щелочных металлов с ростом давления увеличивается; у цезия это свойство выражено особенно сильно.

Атомные часы

Ядро атома цезия и его валентный электрон обладают собственными магнитными моментами. Эти моменты могут быть ориентированы двояко – параллельно или антипараллельно. Разница между энергиями обоих состояний постоянна, и, естественно, переход из одного состояния в другое сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). Используя это свойство, ученые создали цезиевые «атомные часы» – едва ли не самые точные в мире.

Цезий входит в группу химических элементов с ограниченными запасамивместе с гафнием, танталом, бериллием, рением, металлами платиновой группы, кадмием, теллуром. Общие выявленные мировые ресурсы руд составляют около 180 тыс. тонн (в пересчёте на окись цезия), но они крайне распылены. Сверхвысокие цены — это неотъемлемая черта, сопровождающая цезий и рубидий в прошлом и настоящем. Мировой объём добычи цезия составляет около 9 тонн в год, а потребность свыше 85 тонн в год и она постоянно растёт. У цезия есть и недостатки, которые обусловливают постоянный поиск его минералов: извлечение этого металла из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, запасы цезиевых руд очень ограничены и не могут обеспечить постоянно растущий спрос на металлический цезий (потребности в металле более чем в 8,5 раз превышают его добычу, и положение в металлургии цезия ещё более тревожное, чем, например, в металлургии тантала или рения). Промышленность нуждается именно в очень чистом материале (на уровне 99,9—99,999 %), и это является одной из труднейших задач в металлургии редких элементов. Для получения цезия достаточной степени чистоты требуется многократная ректификация в вакууме, очистка от механических примесей на металлокерамических фильтрах, нагревание с геттерами для удаления следов водорода, азота, кислорода и многократная ступенчатая кристаллизация. Цезий весьма активен и агрессивен по отношению к контейнерным материалам и требует хранения, например, в сосудах из специального стекла в атмосфере аргона или водорода (обычные марки лабораторного стекла цезий разрушает).

Месторождения

По добыче цезиевой руды (поллуцита) лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено около 70 % мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России его мощные месторождения находятся на Кольском полуострове, в Восточном Саяне и Забайкалье. Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о. Эльба), но они обладают малыми запасами и не имеют важного экономического значения.

Ежегодное производство цезия в мире составляет около 20 тонн.

Геохимия и минералогия

Среднее содержание цезия в земной коре 3,7 г/т. Наблюдается некоторое увеличение содержание цезия от ультраосновных пород (0,1 г/т) к кислым (5 г/т). Основная его масса в природе находится в рассеянной форме и лишь незначительная часть заключена в собственных минералах. Постоянно повышенные количества цезия наблюдаются в воробьевите (1—4 %), родиците (около 5 %), авогадрите и лепидолите (0,85 %). По кристаллохимическим свойствам цезий наиболее близок к рубидию, калию и таллию. В повышенных количествах цезий находится в калиевых минералах. Цезий, как и рубидий, имеет тенденцию накапливаться на поздних стадиях магматических процессов, и в пегматитах его концентрации достигают наивысших значений. Среднее содержание цезия в гранитных пегматитах около 0,01 %, а в отдельных пегматитовых жилах, содержащих поллуцит, даже достигает 0,4 %, что примерно в 400 раз выше, чем в гранитах. Наиболее высокие концентрации цезия наблюдаются в редкометально замещённых микроклин-альбитовых пегматитах со сподуменом. При пневматолито-гидротермальном процессе повышенные количества цезия связанны с массивами грейзенезированных аляскитов и гранитов с кварц-берилл-вольфрамитовыми жилами, где он присутствует главным образом в мусковитах и полевых шпатах. В зоне гипергенеза (в поверхностных условиях) цезий в небольшом количестве накапливается в глинах, глинистых породах и почвах, содержащих глинистые минералы, иногда в гидроокислах марганца. Максимальное содержание цезия составляет лишь 15 г/т. Роль глинистых минералов сводится к сорбции, цезий вовлекается в межпакетное пространство в качестве поглощённого основания. Активная миграция этого элемента в водах очень ограничена. Основное количество цезия мигрирует «пассивно», в глинистых частичках речных вод. В морской воде концентрация цезия составляет ок. 0,5 мкг/л. Из числа собственно цезиевых минералов наиболее распространены поллуцит (Cs, Na)·nH2O (22 — 36 % Cs2O), цезиевый берилл (воробьевит) Be2CsAl2(Si6O18) и авогадрит (KCs)BF4. Последние два минерала содержат до 7,5 % окиси цезия.

Получение цезия

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs). Кроме того, в виде примесей цезий входит в ряд алюмосиликатов: лепидолит, флогопит, биотит, амазонит, петалит, берилл, циннвальдит, лейцит, карналлит. В качестве промышленного сырья используются поллуцит и лепидолит.
При промышленном получении цезий в виде соединений извлекается из минерала поллуцита. Это делается хлоридным или сульфатным вскрытием. Первое включает обработку исходного минерала подогретой соляной кислотой, добавление хлорида сурьмы SbCl3 для осаждения соединения Cs3 и промывку горячей водой или раствором аммиака с образованием хлорида цезия CsCl. При втором — минерал обрабатывается подогретой серной кислотой с образованием алюмоцезиевых квасцов CsAl(SO4)2 · 12H2O.
В России после распада СССР промышленная добыча поллуцита не велась, хотя в Вороньей тундре под Мурманском ещё в советское время были обнаружены колоссальные запасы минерала. К тому времени, когда российская промышленность смогла встать на ноги, выяснилось, что лицензию на разработку этого месторождения купила Канадская компания. В настоящее время переработка и извлечение солей цезия из поллуцита ведется в Новосибирске на ЗАО «Завод редких металлов».

Существует несколько лабораторных методов получения цезия. Он может быть получен:
нагревом в вакууме смеси хромата или дихромата цезия с цирконием;
разложением азида цезия в вакууме;
нагревом смеси хлорида цезия и специально подготовленного кальция.

Все методы являются трудоёмкими. Второй позволяет получить высокочистый металл, однако является взрывоопасным и требует на реализацию несколько суток.

Химические свойства

Цезий является наиболее химически активным металлом, полученным в макроскопических количествах (так как активность щелочных металлов растёт с порядковым номером, то франций, вероятно, ещё более активен, но в макроскопических количествах не получен, так как все его изотопы имеют малый период полураспада). Является сильнейшим восстановителем. На воздухе цезий мгновенно окисляется с воспламенением, образуя надпероксид CsO2. При ограниченном доступе кислорода окисляется до оксида Cs2O. Взаимодействие с водой происходит со взрывом, продуктом взаимодействия являются гидроксид CsOH и водород H2. Цезий вступает в реакцию со льдом (даже при −120 °C), простыми спиртами, галогеноорганическими соединениями, галогенидами тяжёлых металлов, кислотами, сухим льдом (взаимодействие протекает с сильным взрывом). Реагирует с бензолом. Активность цезия обусловлена не только высоким отрицательным электрохимическим потенциалом, но и невысокой температурой плавления и кипения (быстро развивается очень большая контактная поверхность, что увеличивает скорость реакции). Многие образуемые цезием соли — нитраты, хлориды, бромиды, фториды, иодиды, хроматы, манганаты, азиды, цианиды, карбонаты и т. д. — чрезвычайно легко растворимы в воде и ряде органических растворителей; наименее растворимы перхлораты (что важно для технологии получения и очистки цезия). Несмотря на то, что цезий является весьма активным металлом, он, в отличие от лития, не вступает в реакцию с азотом при обычных условиях и, в отличие от бария, кальция, магния и ряда других металлов, не способен образовать с азотом соединений даже при сильнейшем нагревании.

Гидроксид цезия — сильнейшее основание с высочайшей электропроводностью в водном растворе; так, например, при работе с ним необходимо учитывать, что концентрированный раствор CsOH разрушает стекло даже при обычной температуре, а расплав разрушает железо, кобальт, никель, а также платину, корунд и диоксид циркония, и даже постепенно разрушает серебро и золото (в присутствии кислорода — очень быстро). Единственным устойчивым в расплаве гидроксида цезия металлом является родий и некоторые его сплавы.

Этот элемент представляет собой мягкий серебристо-золотистый металл с низкой температурой плавления - 28.7°С (то есть чуть выше комнатной).

Реакционная способность элементов в группе увеличивается сверху вниз. Цезий находится внизу первой группы и является очень реакционно способным. Если бросить немного цезия в воду, произойдет сильный взрыв, на воздухе этот металл быстро сгорает. С ним нужно работать только в инертной атмосфере, а хранить - под слоем масла или в запаянных ампулах. У цезия есть два радиоактивных изотопа - Cs-134 и Cs-137.

Распространение цезия в природе

Свое название цезий получил от латинского слова cae­sius - «небесно-голубой». Цезий содержится в редком минерале поллуците. Его месторождения находятся в основном в Канаде, а также в Намибии, Зимбабве, России (Кольский полуостров, Восточный Саян, Забайкалье). Небольшие, экономически незначимые месторождения поллуцита есть в Казахстане, Монголии и Италии. За год во всем мире добывается около 20 тонн обогащенной руды цезия. Годовой объем производства чистого металла составляет всего 9 тонн. Потребность в цезии постоянно растет и превышает объемы его добычи. Поэтому положение на рынке цезия весьма тревожное, так же как и в случае с танталом и рением.

Как был открыт цезий

В 1860 году немецкие ученые Роберт Вильгельм Бунзен и Густав Роберт Кирхгоф изучали воды Бад-Дюркхаймского минерального источника методом оптической спектроскопии. Они обнаружили в спектре две новые синие линии. Так цезий стал первым элементом, открытым с помощью спектрального анализа! В 1882 году шведский химик К. Сеттерберг провел электролиз расплава смеси цианида цезия и бария и выделил цезий в чистом виде.

Цезий-137

У Cs-137 период полураспада составляет 30 лет. Этот злосчастный изотоп содержался в радиоактивных загрязнениях от подземных испытаний ядерного оружия (1945-1963 гг.), также он известен по Чернобыльской катастрофе. Большие количества Cs-137 были обнаружены от Восточной Европы до Ирландии. От него пострадали растения и домашний скот, который пасся на зараженных землях. Использование таких территорий было строго ограниченным, а растения и животные проверялись на заражение. Следы изотопа продолжали проявляться даже спустя 25 лет после катастрофы.

Похожее заражение территорий Cs-137 произошло в Японии при аварии на АЭС в Фукусиме в 2011 году. К счастью, как утверждают многие исследователи, радиоактивные частицы осели в отработанном топливе, а не улетели с дымом, и поэтому не рассеялись слишком далеко. Цезий - микроэлемент, который содержится в растениях и организме животных (в основном в мышцах, сердце, печени и крови). Радиоактивный Cs-137 накапливается в пресноводных водорослях, арктических растениях и лишайниках. Относительно большой коэффициент накопления отмечен у северных оленей и североамериканских водоплавающих птиц. «Аккумуляторами» радиоцезия считаются такие грибы: маслята, моховики, свинушка, горькушка, польский гриб. Однако биологическая роль цезия до конца не раскрыта.

Цезий-133

Стабильный изотоп Cs-133 используется в фотоэлементах и фотоумножителях и детекторах ионизирующего излучения (иодид цезия). Также Cs-133 применяется как оптический материал (в виде иодида и бромида), при изготовлении светящихся трубок (в соединениях с цирконием и оловом). Цезий выступает в качестве катализатора при получении аммиака, серной кислоты, бутилового спирта, в реакциях дегидрогенизации и при получении муравьиной кислоты. Цезий составляет основу лекарственных препаратов для лечения язвенных заболеваний, дифтерии, шоков, шизофрении. Цезиевая плазма является компонентом МГД-генераторов с повышенным КПД.

Cs-133 используется в атомных часах - наиболее точных устройствах для определения времени. С 1967 года в международной системе единиц СИ 1секунда = 9 192 631 770 периодов электромагнитного излучения, которое возникает при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Первые цезиевые атомные часы были сконструированы в 1955 году Луизом Эссеном (Louis Es­sen) в Национальной физической лаборатории Великобритании (NPL). Эти часы идут с точностью в одну секунду за 300 000 лет. Сейчас атомные часы применяются в навигации космических кораблей, спутников, баллистических ракет, самолётов, подводных лодок, автомобилей в автоматическом режиме по спутниковой связи. Также атомные часы используются в системах спутниковой и наземной телекоммуникации, в базовых станциях мобильной связи, международных и национальных бюро стандартов и службах точного времени.

Цезий (лат. Caesium), Cs, химический элемент I группы периодической системы Менделеева; атомный номер 55, атомная масса 132, 9054; серебристо-белый металл, относится к щелочным металлам. В природе встречается в виде стабильного изотопа 133 Cs. Из искусственно полученных радиоактивных изотопов с массовыми числами от 113 до 148 наиболее устойчив 137 Cs с периодом полураспада Т ½ = 33 года.

Историческая справка. Цезий открыт в 1860 году Р. В. Бунзеном и Г. Р. Кирхгофом в водах Дюркхеймского минерального источника (Германия) методом спектрального анализа. Назван Цезий (от лат. caesius - небесно-голубой) по двум ярким линиям в синей части спектра. Металлический Цезий впервые выделил шведский химик К. Сеттерберг в 1882 при электролизе расплавленной смеси CsCN и Ва.

Распространение Цезия в природе. Цезий - типичный редкий и рассеянный элемент. Среднее содержание Цезия в земной коре (кларк) 3,7·10 -4 % по массе. В ультраосновных горных породах содержится 1·10 -5 % Цезия, в основных - 1·10 -4 %. Цезий геохимически тесно связан с гранитной магмой, образуя концентрации в пегматитах вместе с Li, Be, Та, Nb; в особенности в пегматитах, богатых Na (альбитом) и Li (лепидолитом). Известно два крайне редких минерала Цезия - поллуцит и авогадрит (К,Cs)(BF) 4 ; наибольшая концентрация Цезия в поллуците (26-32% Cs 2 O). Большая часть атомов Цезия изоморфно замещает К и Rb в полевых шпатах и слюдах. Примесь Цезия встречается в берилле, карналлите, вулканическом стекле. Слабое обогащение Цезия установлено в некоторых термальных водах. В целом Цезий - слабый водный мигрант. Основное значение в истории Цезия имеют процессы изоморфизма и сорбции крупных катионов Цезия. В геохимическом отношении Цезий близок к Rb и К, отчасти к Ва.

Физические свойства Цезия. Цезий - очень мягкий металл; плотность 1,90 г/см 3 (20 °С); t пл 28,5 °С; t кип 686 °С. При обычной температуре кристаллизуется в кубической объемноцентрированной решетке (а = 6,045Å). Атомный радиус 2,60 Å, ионный радиус Cs + 1,86 Å. Удельная теплоемкость 0,218 кдж/(кг·К) ; удельная теплота плавления 15,742 кдж/кг (3,766 кал/г); удельная теплота испарения 610,28 кдж/кг (146,0 кал/г); температурный коэффициент линейного расширения (0-26 °С) 9,7·10 -5 ; коэффициент теплопроводности (28,5°С) 18,42 вт/(м·К) ; удельное электросопротивление (20 °С) 0,2 мком·м; температурный коэффициент электросопротивления (0-30°С) 0,005. Цезий диамагнитен, удельная магнитная восприимчивость (18 °С) -0,1·10 -6 . Динамическая вязкость 0,6299 Мн·сек/м 2 (43,4 °С), 0,4065 Мн·сек/м 2 (140,5 °С). Поверхностное натяжение (62 °С) 6,75·10 -2 н/м (67,5 дин/см); сжимаемость (20 °С) 7,05Мн/м 2 (70,5 кгс/см 2). Энергия ионизации 3,893 эв; стандартный электродный потенциал - 2,923 в, работа выхода электронов 1,81 эв. Твердость по Бринеллю 0,15 Мн/м 2 (0,015 кгс/см 2).

Химические свойства Цезия. Конфигурация внешних электронов атома Цезия 6s 1 ; в соединениях имеет степень окисления + 1. Цезий обладает очень высокой реакционной способностью. На воздухе мгновенно воспламеняется с образованием пероксида Cs 2 O 2 и надпероксида CsO 2 ; при недостатке воздуха получается оксид Cs 2 O; известен также озонид CsО 3 . С водой, галогенами, углекислым газом, серой, четыреххлористым углеродом Цезий реагирует со взрывом, давая соответственно гидроксид CsOH, галогениды, оксиды, сульфиды, CsCl. С водородом взаимодействует при 200-350 °С и давлении 5-10 Мн/м 2 (50-100 кгс/см 2), образуя гидрид. Выше 300 °С Цезий разрушает стекло, кварц и других материалы, а также вызывает коррозию металлов. Цезий при нагревании соединяется с фосфором, кремнием, графитом. При взаимодействии Цезия со щелочными и щелочноземельными металлами, а также с Hg, Au, Bi и Sb образуются сплавы; с ацетиленом - ацетиленид Cs 2 C 2 . Большинство простых солей Цезия, особенно CsF, CsCl, Cs 2 CO 3 , Cs 2 SO 4 , CsH 2 PO 4 , хорошо растворимы в воде; малорастворимы CsMnO 4 , CsClO 4 и Cs 2 Cr 2 O 7 . Цезий не принадлежит к числу комплексообразующих элементов, но он входит в состав многих комплексных соединений в качестве катиона внешней среды.

Получение Цезия. Цезий получают непосредственно из поллуцита методом вакуумтермического восстановления. В качестве восстановителей используют Са, Mg, Al и других металлы.

Различные соединения Цезий также получают путем переработки поллуцита. Сначала руду обогащают (флотацией, ручной рудоразработкой и т. п.), а затем выделенный концентрат разлагают либо кислотами (H 2 SO 4 , HNO 3 и другими), либо спеканием с оксидно-солевыми смесями (например, СаО с СаCl 2). Из продуктов разложения поллуцита Цезий осаждают в виде CsAl(SO 4) 2 ·12H 2 O, Cs 3 и других малорастворимых соединений. Далее осадки переводят в растворимые соли (сульфат, хлорид, иодид и других). Завершающим этапом технологического цикла является получение особо чистых соединений Цезия, для чего применяют методы кристаллизации из растворов Cs, Cs 3 , Cs 2 и сорбцию примесей на окисленных активированных углях. Глубокую очистку металлического Цезия производят методом ректификации. Перспективно получение Цезия из отходов от переработки нефелина, некоторых слюд, а также подземных вод при добыче нефти; Цезий извлекают экстракционными и сорбционными методами.

Хранят Цезий либо в ампулах из стекла "пирекс" в атмосфере аргона, либо в стальных герметичных сосудах под слоем обезвоженного вазелинового или парафинового масла.

Применение Цезия. Цезий идет для изготовления фотокатодов (сурьмяно-цезиевых, висмуто-цезиевых, кислородно-серебряно-цезиевых), электровакуумных фотоэлементов, фотоэлектронных умножителей, электронно-оптических преобразователей. Изотопы Цезия применяют: 133 Cs в квантовых стандартах частоты, 137 Cs в радиологии. Резонансная частота энергетического перехода между подуровнями основного состояния 133 Cs положена в основу современного определения секунды.

Цезий в организме. Цезий - постоянный химический микрокомпонент организма растений и животных. Морские водоросли содержат 0,01-0,1 мкг Цезия в 1 г сухого вещества, наземные растения - 0,05-0,2. Животные получают Цезий с водой и пищей. В организме членистоногих около 0,067-0,503 мкг/г Цезия, пресмыкающихся - 0,04, млекопитающих -0,05. Главное депо Цезия в организме млекопитающих - мышцы, сердце, печень; в крови - до 2,8 мкг/л. Цезий относительно малотоксичен.

Цезий-137 (137 Cs) - бета-гамма-излучающий радиоизотоп Цезий; один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимуществено в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления 137 Cs наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников. В организме животных 137 Cs накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и северных американских водоплавающих птиц. В организме человека l37 Cs распределен относительно равномерно и не оказывает значительного вредного действия.