Однородные уравнения 2 степени примеры. План-конспект урока на тему: Однородные тригонометрические уравнения

Государственное бюджетное профессиональное образовательное учреждение с.Тээли Республики Тыва

Разработка урока по математике

Тема урока:

«Однородные тригонометрические уравнения»

Преподаватель: Ооржак

Айлана Михайловна

Тема урока : «Однородные тригонометрические уравнения» (по учебнику А.Г. Мордковича)

Группа : Мастер растениеводства, 1 курс

Тип урока : Урок изучения нового материала.

Цели урока :

2. Развивать логическое мышление, умение делать выводы, умение оценивать результаты выполненных действий

3. Воспитывать у обучающихся аккуратность, чувство ответственности, воспитание положительных мотивов учения

Оборудование урока : ноутбук, проектор, экран, карточки, плакаты по тригонометрии: значения тригонометрических функций, основные формулы тригонометрии.

Продолжительность урока: 45 минут.

Структура урока:

Структурный элемент урока

Пд

(мин)

Методические особенности, краткие указания по проведению этапа урока

Деятельность преподавателя

Деятельность обучающихся

Организационный момент

Контроль явки учащихся.

α 0

Преподаватель проверяет готовность к уроку

Дежурные сообщают отсутствующих на уроке

Актуализация опорных знаний

Проверка домашнего задания

α 2

Повторение основных понятий

Делает обход

3 обучающихся у доски записывают решение. Остальные делают взаимопроверку

Формирование новых знаний

Мотивационный момент

α 2

На экране примеры тригонометрических уравнений

Задает вопросы

Отвечают

Объяснение новой темы

α 1

На экране слайды с решением однородных тригонометрических уравнений

Преподаватель объясняет тему

Обучающиеся слушают и записывают

Закрепление

Решение примеров

α 2

Слабые обучающиеся работают с преподавателем. Сильные обучающиеся работают самостоятельно.

Работает со слабыми обучающимися у доски.

Решают примеры

Дифференцированная самостоятельная работа

α 2

Раздать карточки

Делает обход. Контроль слабых обучающихся

Решают примеры

Подведение итогов

α 1

Подведение итогов урока. Сообщение оценок учащимся

Преподаватель подводит итог и сообщает оценки

Обучающиеся слушают

Выдача домашнего задания

α 1

Сообщить обучающимся домашнее задание

Преподаватель дает краткий инструктаж по домашнему заданию

Записывают домашнее задание

Ход урока.

1. Организационный момент (1 мин)

Проверить готовность обучающихся к уроку, заслушать дежурных по группе.

2. Актуализация опорных знаний (3 мин)

2.1. Проверка домашнего задания.

Трое обучающихся решают у доски № 18.8 (в,г); № 18.19. Остальные обучающиеся делают взаимопроверку.

№ 18.8 (в)

5 cos 2 x + 6 sin x – 6 = 0

5 (1 - sin x) + 6 sin x – 6 = 0

5 - 5 sin 2 x + 6 sin x – 6 = 0

5 sin 2 x + 6 sin x – 1 = 0

5 sin 2 x – 6 sin x + 1 = 0

z=sin x,

5z 2 – 6 z + 1 = 0

z 1 = 1, sin x = 1, х= +2 π n , n Z

z 2 = , sin x = , х= (-1) n arcsin + π n, n Z

Ответ: х= +2 π n , х=(-1) n arcsin + π n, n Z

№ 18.8 (г)

4 sin 3x + cos 2 3x = 4

4 sin 3x + (1-sin 2 3x) – 4 = 0

Sin 2 3x + 4 sin 3x – 3 = 0

sin 2 3x – 4 sin 3x + 3 = 0

z=sin 3x,

z 2 – 4 z + 3 = 0

z 1 = 3, не удовлетворяет условию

z 2 = 1, sin 3x =1, 3х= +2 π n , n Z

X = + π n , n Z

Ответ: x = + π n , n Z

№ 18.19 (в)

сos =

2x – = , n Z

x 1 = , n Z

x 2 = , n Z

а) б) 0, , , в) - г) - , 0,

3. Изучение нового материала (13 мин)

3.1. Мотивация обучающихся.

Обучающимся предлагается назвать уравнения, которые они знают и могут решить (слайд № 1)

1) 3 cos 2 х – 3 cos х = 0;

2) cos (х – 1) = ;

3) 2 sin 2 х + 3 sin х = 0;

4) 6 sin 2 х – 5 cos х + 5 = 0; 1 2

5) sin х cos х + cos²х = 0;

6) tg + 3ctg = 4.

7) 2sin х – 3cos х = 0;

8) sin 2 х + cos 2 х = 0;

9) sin²х – 3sinх cos х+2cos²х = 0.

Обучающиеся не смогут назвать решение уравнений 7-9.

3.2. Объяснение новой темы.

Преподаватель: Уравнения, которые вы не смогли решить довольно часто встречаются на практике. Они называются однородными тригонометрическими уравнениями. Записать тему урока: «Однородные тригонометрические уравнения». (слайд № 2)

На экране проектора определение однородных уравнений. (слайд № 3)

Рассмотреть метод решения однородных тригонометрических уравнений (слайд № 4, 5)

I степени

II степени

a sinx + b cosx = 0, (a,b ≠ 0).

Разделим обе части уравнения почленно на cosx ≠ 0.

Получим: a tgx + b = 0

Tgx = - –

простейшее тригонометрическое уравнение

a sin²x + b sinx cosx + c cos²x = 0.

1) если а ≠ 0, разделим обе части уравнения почленно на cos²x ≠0

Получим: a tg²x + b tgx + c = 0, решаем методом введения новой переменной z= tgx

2) если а = 0, то

Получим: b sinx cosx + c cos²x =0, решаем методом разложения на множители

При делении однородного уравнения

a sinx + b cosx = 0 на cos x ≠ 0

При делении однородного уравнения a sin²x + b sinx cosx + c cos²x = 0 на cos 2 x ≠ 0

корни этого уравнения не теряются.

Разобрать решение примеров

Пример 1. Решить уравнение 2sin х – 3cos х = 0; (слайд № 6)

Это однородное уравнение первой степени. Разделим обе части уравнения почленно на cos x , получим:

2tg x – 3 = 0

tg x =

x = arctg + πn , n Z.

Ответ: x = arctg + π n, n Z.

Пример 2 . Решить уравнение sin 2 х + cos 2 х = 0; (слайд № 7)

Это однородное уравнение первой степени. Разделим обе части уравнения почленно на cos 2 x , получим:

tg2 x + 1 = 0

tg2 x = - 1

2x = arctg (-1)+ πn, n Z.

2x = - + πn, n Z.

x = - + , n Z.

Ответ: x = - + , n Z.

Пример 3 . Решить уравнение sin²х – 3sinх cos х+2cos²х = 0. (слайд № 8)

Каждый член уравнения имеет одну и ту же степень. Это однородное уравнение второй степени. Разделим обе части уравнения почленно на сos 2 x ≠ 0, получим:

tg 2 x-3tg x+2 = 0. Введем новую переменную z = tg x, получим

z 2 – 3z + 2 =0

z 1 = 1, z 2 = 2

значит, либо tg x = 1, либо tg x = 2

tg x = 1

х = arctg 1 + πn, n Z

x = + πn, n Z

tg x = 2

х = arctg 2 + πn, n Z

Ответ: x = + πn, х = arctg 2 + πn, n Z

4. Закрепление изученного материала (10 мин)

Преподаватель подробно разбирает примеры со слабыми обучающимися на доске, сильные обучающиеся самостоятельно решают в тетрадях.

№ 18.12 (а)

18.24 (а)

18.24 (б)

sin 2 х + 2 sin х cos х – 3 cos² х = 0

tg 2 x + 2 tg x – 3 = 0

z = tg x

z 2 + 2 z – 3 = 0

z 1 = 3; z 2 = - 1.

tg x = 3, х = arctg 3 + πn, n Z

tg x = -1, х = arctg (-1) + πn, n Z

x = + πn, n Z

Ответ: х = arctg 3 + πn,

X = + πn, n Z

sin 2 х = cos 2 х

tg2x = 1

2x = arctg 1 + πn, n Z

2x = + πn, n Z

x = + , n Z

Ответ: x = + , n Z

Tg 3 x = 1

tg 3 x =

3 x = + πn, n Z

x = + , n Z

5. Дифференцированная самостоятельная работа (15 мин)

Преподаватель выдает карточки с заданиями трех уровней: базовый (А), средний (В), повышенный (С). Обучающиеся сами выбирают, примеры какого уровня они будут решать.

Уровень А

2 sin x+ 2 cos x = 0

cos x+ 2 sin x = 0

Уровень В

2 sin x+ 2 cos x = 0

6 sin 2 х - 5 sinх cos х + cos 2 х =0

Уровень С

5 sin 2 х + 2 sinх cos х - cos 2 х =1

2 sin x - 5 cos x = 3

1- 4 sin 2x + 6 cos 2 х = 0

6. Подведение итогов. Рефлексия учебной деятельности на уроке (2 мин)

Ответить на вопросы:

Какие виды тригонометрических уравнений мы изучили?

Как решается однородное уравнение первой степени?

Как решается однородное уравнение второй степени?

Я узнал …

Я научился …

Отметить хорошую работу на уроке отдельных обучающихся, выставить оценки.

7. Домашнее задание. (1 мин)

Сообщить обучающимся домашнее задание, дать краткий инструктаж по его выполнению.

№ 18.12 (в, г), № 18.24 (в,г), № 18.27 (а)

Использованная литература:

    Слайд 2

    «Однородные тригонометрические уравнения»

    1. Уравнение вида а sin x + b cos x = 0, где а ≠0, b ≠0 называют однородным тригонометрическим уравнением первой степени. 2. Уравнение вида а sin 2 х + b sin х cos х + c cos 2 x = 0, где a ≠0, b ≠0, с ≠0 называют однородным тригонометрическим уравнением второй степени. Определение:

    I степени a sinx + b cosx = 0, (a,b ≠ 0). Разделим обе части уравнения почленно на cosx ≠ 0. Получим: a tgx + b = 0 tgx = -b /а простейшее тригонометрическое уравнение При делении однородного уравнения a sinx + b cosx = 0 на cos x ≠ 0 корни этого уравнения не теряются. Метод решения однородных тригонометрических уравнений

    a sin²x + b sinx cosx + c cos²x = 0. 1) если а ≠ 0, разделим обе части уравнения почленно на cos ² x ≠0 Получим: a tg ² x + b tgx + c = 0, решаем методом введения новой переменной z = tgx 2) если а = 0, то Получим: b sinx cosx + c cos ² x =0, решаем методом разложения на множители / При делении однородного уравнения a sin ² x + b sinx cosx + c cos ² x = 0 на cos 2 x ≠ 0 корни этого уравнения не теряются. II степени

    Это однородное уравнение первой степени. Разделим обе части уравнения почленно на cos x , получим: Пример 1. Решить уравнение 2 sin х – 3 cos х = 0

    Это однородное уравнение первой степени. Разделим обе части уравнения почленно на cos 2 x , получим: Пример 2 . Решить уравнение sin 2 х + cos 2 х = 0

    Каждый член уравнения имеет одну и ту же степень. Это однородное уравнение второй степени. Разделим обе части уравнения почленно на с os 2 x ≠ 0, получим: Пример 3 . Решить уравнение sin ² х – 3 sin х cos х+2 cos ² х = 0

    Ответьте на вопросы: - Какие виды тригонометрических уравнений мы изучили? -Как решается однородное уравнение первой степени? - Как решается однородное уравнение второй степени? Подведение итогов

    Я узнал … - Я научился … Рефлексия

    № 18.12 (в, г), № 18.24 (в,г), № 18.27 (а) Домашнее задание.

    Спасибо за урок! МОЛОДЦЫ!

    Предварительный просмотр:

    Самоанализ урока математики преподавателя Ооржак А.М.

    Группа : Мастер растениеводства, 1 курс.

    Тема урока : Однородные тригонометрические уравнения.

    Тип урока : Урок изучения нового материала.

    Цели урока:

    1. Сформировать у обучающихся навыки решения однородных тригонометрических уравнений, рассмотреть методы решения однородных уравнений базового и повышенного уровня сложности.

    2. Развивать логическое мышление, умение делать выводы, умение оценивать результаты выполненных действий.

    3. Воспитывать у обучающихся аккуратность, чувство ответственности, воспитание положительных мотивов учения.

    Урок проводился согласно тематического планирования. Тема урока отражает теоретическую и практическую часть урока и понятна обучающимся. Все этапы урока были направлены на выполнение этих целей с учетом особенностей группы.

    Структура урока.

    1.Организационный момент включал в себя предварительную организацию группы, мобилизующее начало урока, создание психологической комфортности и подготовку обучающихся к активному и сознательному усвоению нового материала. Подготовка группы и каждого обучающегося была проверена мною визуально. Дидактическая задача этапа: П оложительный настрой на урок.

    2. Следующий этап – актуализация опорных знаний обучающихся. Основной задачей этого этапа является: восстановление в памяти обучающихся знаний, необходимых для изучения нового материала. Актуализация была проведена в форме проверки домашнего задания у доски.

    3. (Основной этап урока) Формирование новых знаний. На этом этапе были реализованы следующие дидактические задачи: Обеспечение восприятия, осмысление и первичного запоминания знаний и способов действий, связей и отношений в объекте изучения.

    Этому способствовали: создание проблемной ситуации, метод бесед в сочетании с использованием ИКТ. Показателем эффективности усвоения обучающимися новых знаний является правильность ответов, самостоятельная работа, активное участие обучающихся в работе.

    4.Следующий этап - первичное закрепление материала. Цель которого, установка обратной связи для получения информации о степени понимания нового материала, полноты, правильности его усвоения и для своевременной коррекции обнаруженных ошибок. Для этого я использовала: решение простых однородных тригонометрических уравнений. Здесь использовались задания из учебника, которые соответствуют обязательным результатам обучения. Первичное закрепление материала проводилось в атмосфере доброжелательности, сотрудничества. На этом этапе я работала со слабыми обучающимися, остальные решали самостоятельно, с последующей самопроверкой с доски.

    5. Следующий момент урока был первичный контроль знаний. Дидактическая задача этапа: Выявление качества и уровня овладения знаниями и способами действий, обеспечение их коррекции. Здесь реализовала дифференцированный подход к обучению, предложила ребятам на выбор задания трех уровней: базовый (А), средний (В), повышенный (С). Сделала обход и отметила себе обучающихся, которые выбрали базовый уровень. Эти обучающиеся выполняли работу под контролем преподавателя.

    6. На следующем этапе – подведение итогов, решались задачи анализа и оценки успешности достижения цели. Подводя итоги урока я одновременно осуществила рефлексию учебной деятельности. Обучающиеся усвоили способы решения однородных тригонометрических уравнений. Были выставлены оценки.

    7. Заключительный этап – задание на дом. Дидактическая задача: Обеспечение понимания обучающихся содержания и способов выполнения домашнего задания. Дала краткий инструктаж по выполнению домашнего задания.

    В ходе урока мне довелось реализовать обучающие, развивающие и воспитательные цели. Считаю, что этому способствовало то, что с первых минут урока ребята показали активность. Они были готовы к восприятию новой темы. Атмосфера в группе была психологически благоприятной.


    Нелинейные уравнения с двумя неизвестными

    Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

    Задание числовой функции z от двух переменных x и y часто обозначают так:

    где f (x , y ) – любая функция, отличная от функции

    f (x , y ) = ax +by + c ,

    где a , b , c – заданные числа.

    Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

    Пример 1 . Решить уравнение

    Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

    решением которой служит пара чисел (6 ; 3) .

    Ответ : (6 ; 3)

    Пример 2 . Решить уравнение

    Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

    (1 + y ; y ) ,

    где y – любое число.

    линейное

    Определение 4 . Решением системы уравнений

    называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

    Системы из двух уравнений, одно из которых линейное , имеют вид

    g (x , y )

    Пример 4 . Решить систему уравнений

    Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

    Решая уравнение

    x 1 = - 1 , x 2 = 9 .

    Следовательно,

    y 1 = 8 - x 1 = 9 ,
    y 2 = 8 - x 2 = - 1 .

    Системы из двух уравнений, одно из которых однородное

    Системы из двух уравнений, одно из которых однородное , имеют вид

    где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

    Пример 6 . Решить систему уравнений

    Решение . Решим однородное уравнение

    3x 2 + 2xy - y 2 = 0 ,

    3x 2 + 17xy + 10y 2 = 0 ,

    рассматривая его как квадратное уравнение относительно неизвестного x :

    .

    В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

    5y 2 = - 20 ,

    которое корней не имеет.

    В случае, когда

    из второго уравнения системы (11) получаем уравнение

    ,

    корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

    Ответ : (- 2 ; 3) , (2 ; - 3)

    Примеры решения систем уравнений других видов

    Пример 8 . Решить систему уравнений (МФТИ)

    Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

    Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

    Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

    • первое уравнение системы оставим без изменений;
    • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

    В результате система (14) преобразуется в равносильную ей систему

    из которой находим

    Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

    У системы (16) первое уравнение - линейное , поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы.

    Последняя деталь, как решать задания С1 из ЕГЭ по математике - решение однородных тригонометрических уравнений. Как их решать мы расскажем в этом завершающем уроке.

    Что же представляют из себя эти уравнения? Давайте запишем их в общем виде.

    $$a\sin x + b\cos x = 0,$$

    где `a` и `b` - некоторые константы. Это уравнение называется однородным тригонометрическим уравнением первой степени.

    Однородное тригонометрическое уравнение первой степени

    Чтобы решить такое уравнение, нужно поделить его на `\cos x`. Тогда оно примет вид

    $$\newcommand{\tg}{\mathop{\mathrm{tg}}} a \tg x + b = 0.$$

    Ответ такого уравнения легко записывается через арктангенс.

    Обратите внимание, что `\cos x ≠0`. Чтобы убедиться в этом, подставим в уравнение вместо косинуса ноль и получим, что синус тоже должен быть равен нулю. Однако одновременно нулю они равны быть не могут, значит, косинус - не ноль.

    Некоторые задания реального экзамена этого года сводились к однородному тригонометрическому уравнению. Перейдите по ссылке, чтобы . Мы же возьмем чуть упрощенный вариант задачи.

    Первый пример. Решение однородного тригонометрического уравнения первой степени

    $$\sin x + \cos x = 0.$$

    Разделим на `\cos x`.

    $$\tg x + 1 = 0,$$

    $$x = -\frac{\pi}{4}+\pi k.$$

    Повторюсь, подобное задание было на ЕГЭ:) конечно, нужно еще выполнить отбор корней, но это тоже не должно вызвать особых трудностей.

    Давайте теперь перейдем к следующему типу уравнений.

    Однородное тригонометрическое уравнение второй степени

    В общем виде оно выглядит так:

    $$a\sin^2 x + b\sin x \cos x + c\cos^2 x =0,$$

    где `a, b, c` - некоторые константы.

    Такие уравнения решаются делением на `\cos^2 x` (который вновь не равен нулю). Давайте сразу разберем пример.

    Второй пример. Решение однородного тригонометрического уравнения второй степени

    $$\sin^2 x - 2\sin x \, \cos x - 3\cos^2 x = 0.$$

    Разделим на `\cos^2 x`.

    $${\tg}^2 x - 2\tg x -3 =0.$$

    Заменим `t = \tg x`.

    $$t^2 - 2t -3 = 0,$$

    $$t_1 = 3, \ t_2 = -1.$$

    Обратная замена

    $$\tg x = 3, \text{ или } \tg x = -1,$$

    $$x = \arctan{3}+\pi k, \text{ или } x= -\frac{\pi}{4}+ \pi k.$$

    Ответ получен.

    Третий пример. Решение однородного тригонометрического уравнения второй степени

    $$-\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - 3\cos^2 x = -2.$$

    Все бы ничего, но это уравнение не однородное - нам мешает `-2` в правой части. Что делать? Давайте воспользуемся основным тригонометрическим тождеством и распишем с его помощью `-2`.

    $$-\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - 3\cos^2 x = -2(\sin^2 x + \cos^2 x),$$

    $$-\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - 3\cos^2 x + 2\sin^2 x + 2\cos^2 x = 0,$$

    $$\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - \cos^2 x = 0.$$

    Разделим на `\cos^2 x`.

    $${\tg}^2 x + \frac{2\sqrt{2}}{3} \tg x - 1 = 0,$$

    Замена `t= \tg x`.

    $$t^2 + \frac{2\sqrt{2}}{3} t - 1 = 0,$$

    $$t_1 = \frac{\sqrt{3}}{3},\ t_2 = -\sqrt{3}.$$

    Выполнив обратную замену, получим:

    $$\tg x = \frac{\sqrt{3}}{3} \text{ или } \tg x = -\sqrt{3}.$$

    $$x =-\frac{\pi}{3} + \pi k,\ x = \frac{\pi}{6}+ \pi k.$$

    Это последний пример в этом уроке.

    Как обычно, напомню: тренировка, это наше все. Каким бы гениальным ни был человек, без тренировки навыки не разовьются. На экзамене это черевато волнением, ошибками, потерей времени (продолжите этот список самостоятельно). Обязательно занимайтесь!

    Тренировочные задания

    Решите уравнения:

    • `10^{\sin x} = 2^{\sin x} \cdot 5^{-\cos x}`. Это задание из реального ЕГЭ 2013. Знание свойств степеней никто не отменял, но если забыли, подсмотреть ;
    • `\sqrt{3} \sin x + \sin^2 \frac{x}{2} = \cos^2 \frac{x}{2}`. Пригодится формула из седьмого урока .
    • `\sqrt{3} \sin 2x + 3 \cos 2x = 0`.

    На этом все. И как обычно напоследок: задаем вопросы в комментариях, ставим лайки, смотрим видео, учимся решать ЕГЭ.

    В этой статье мы рассмотрим способ решения однородных тригонометрических уравнений.

    Однородные тригонометрические уравнения имеют ту же структуру, что и однородные уравнения любого другого вида. Напомню способ решения однородных уравнений второй степени:

    Рассмотрим однородные уравнения вида

    Отличительные признаки однородных уравнений:

    а) все одночлены имеют одинаковую степень,

    б) свободный член равен нулю,

    в) в уравнении присутствуют степени с двумя различными основаниями.

    Однородные уравнения решаются по сходному алгоритму.

    Чтобы решить уравнение такого типа, разделим обе части уравнения на (можно разделить на или на )

    Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

    Если является, то мы выписываем этот корень, чтобы потом про него не забыть, а затем делим на это выражение.

    Вообще, первым делом, при решении любого уравнения, в правой части которого стоит ноль, нужно попытаться разложить левую часть уравнения на множители любым доступным способом. А затем каждый множитель приравнять к нулю. В этом случае мы точно не потеряем корни.

    Итак, осторожно разделим левую часть уравнения на выражение почленно. Получим:

    Сократим числитель и знаменатель второй и третьей дроби:

    Введем замену:

    Получим квадратное уравнение:

    Решим квадратное уравнение, найдем значения , а затем вернемся к исходному неизвестному.

    При решении однородных тригонометрических уравнений, нужно помнить несколько важных вещей:

    1. Свободный член можно преобразовать к квадрату синуса и косинуса с помощью основного тригонометрического тождества:

    2. Синус и косинус двойного аргумента являются одночленами второй степени - синус двойного аргумента легко преобразовать к произведению синуса и косинуса, а косинус двойного аргумента - к квадрату синуса или косинуса:

    Рассмотрим несколько примеров решения однородных тригонометрических уравнений.

    1 . Решим уравнение:

    Это классический пример однородного тригонометрического уравнения первой степени: степень каждого одночлена равна единице, свободный член равен нулю.

    Прежде чем делить обе части уравнения на , необходимо проверить, что корни уравнения не являются корнями исходного уравнения. Проверяем: если , то title="sin{x}0">, следовательно их сумма не равна нулю.

    Разделим обе части уравнения на .

    Получим:

    , где

    , где

    Ответ: , где

    2 . Решим уравнение:

    Это пример однородного тригонометрического уравнения второй степени. Мы помним, что если мы можем разложить левую часть уравнения на множители, то желательно это сделать. В этом уравнении мы можем вынести за скобки . Сделаем это:

    Решение первого уравнения: , где

    Второе уравнение - однородное тригонометрическое уравнение первой степени. Чтобы его решить, разделим обе части уравнения на . Получим:

    Ответ: , где ,

    3 . Решим уравнение:

    Чтобы это уравнение "стало" однородным, преобразуем в произведение, и представим число 3 в виде суммы квадратов синуса и косинуса:

    Перенесем все слагаемые влево, раскроем скобки и приведем подобные члены. Получим:

    Разложим левую часть на множители и приравняем каждый множитель к нулю:

    Ответ: , где ,

    4 . Решим уравнение:

    Мы видим, что можем вынести за скобки . Сделаем это:

    Приравняем каждый множитель к нулю:

    Решение первого уравнения:

    Второе уравнение совокупности представляет собой классическое однородное уравнение второй степени. Корни уравнения не являются корнями исходного уравнения, поэтому разделим обе части уравнения на :

    Решение первого уравнения:

    Решение второго уравнения.

    Тип урока: обяснение нового материала. Работа проходит в группах. В каждой группе есть эксперт, который контролирует и направляет работу учащихся. Помогает слабым учащимся поверить в свои силы при решении данных уравнений.

    Скачать:


    Предварительный просмотр:

    Урок по теме

    " Однородные тригонометрические уравнения"

    (10-й класс)

    Цель:

    1. ввести понятие однородных тригонометрических уравнений I и II степени;
    2. сформулировать и отработать алгоритм решения однородных тригонометрических уравнений I и II степени;
    3. научить учащихся решать однородные тригонометрических уравнений I и II степени;
    4. развивать умение выявлять закономерности, обобщать;
    5. стимулировать интерес к предмету, развивать чувство солидарности и здорового соперничества.

    Тип урока : урок формирования новых знаний.

    Форма проведения : работа в группах.

    Оборудование: компьютер, мультимедийная установка

    Ход урока

    I. Организационный момент

    На уроке рейтинговая система оценки знаний (учитель поясняет систему оценки знаний, заполнение оценочного листа независимым экспертом, выбранным учителем из числа учащихся). Урок сопровождается презентацией. Приложение 1.

    Оценочный лист№

    п\п

    Фамилия имя

    Домашнее задание

    Познавательная активность

    Решение уравнений

    Самостоятельная

    работа

    Оценка

    II. Актуализация опорных знаний..

    Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений. Вспомним основные виды простейших тригонометрических уравнений. Поставьте с помощью стрелок соответствии между выражениями.

    III. Мотивация обучения.

    Нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

    Вопросы спроецированы на доску. Учащиеся отгадывают, независимый эксперт заносит в оценочный лист баллы отвечающим учащимся.

    Разгадав кроссворд, ребята прочитают слово “однородные”.

    Кроссворд.

    Если вписать верные слова, то получится название одного из видов тригонометрических уравнений.

    1.Значение переменной, обращающее уравнение в верное равенство? (Корень)

    2.Единица измерения углов? (Радиан)

    3.Числовой множитель в произведении? (Коэффициент)

    4.Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

    5.Какая математическая модель необходима для введения тригонометрических функций? (Окружность)

    6.Какая из тригонометрических функций четная? (Косинус)

    7.Как называется верное равенство? (Тождество)

    8.Равенство с переменной? (Уравнение)

    9.Уравнения, имеющие одинаковые корни? (Равносильные)

    10.Множество корней уравнения? (Решение)

    IV. Объяснение нового материала.

    Тема урока “Однородные тригонометрические уравнения”. (Презентация)

    Примеры:

    1. sin x + cos x = 0
    2. √3cos x + sin x = 0
    3. sin 4x = cos 4x
    4. 2sin 2 x + 3 sin x cos x + cos 2 x = 0
    5. 4 sin 2 x – 5 sin x cos x – 6 cos 2 x = 0
    6. sin 2 x + 2 sin x cos x – 3cos 2 x + 2 = 0
    7. 4sin 2 x – 8 sin x cos x + 10 cos 2 x = 3
    8. 1 + 7cos 2 x = 3 sin 2x
    9. sin 2x + 2cos 2x = 1

    V. Самостоятельная работа

    Задачи: всесторонне проверить знания учащихся при решении всех видов тригонометрических уравнений, стимулировать учащихся к самоанализу, самоконтролю.
    Учащимся предлагается выполнить письменную работу на 10 минут.
    Учащиеся выполняют на чистых листочках под копировку. По истечении времени собираются вершки самостоятельной работы, а решения под копировку остаются у учащихся.
    Проверка самостоятельной работы (3 мин) проводится взаимопроверкой.
    . Учащиеся цветной ручкой проверяют письменные работы своего соседа и записывают фамилию проверяющего. Затем сдают листочки.

    Потом сдают независимому эксперту.

    1 вариант: 1) sin x = √3cos x

    2) 3sin 2 x – 7sin x cos x + 2 cos 2 x = 0

    3) 3sin x – 2sin x cos x = 1

    4) sin 2x⁄sin x =0

    2 вариант: 1) cosx + √3sin x = 0

    2)2sin 2 x + 3sin x cos x – 2 cos 2 x = 0

    3)1 + sin 2 x = 2 sin x cos x

    4) cos 2x ⁄ cos x = 0

    VI. Подведение итогов урока

    VII. Задание на дом:

    Домашнее задание – 12 баллов (на дом было задано 3 уравнения 4 х 3 = 12)

    Активность уч-ся – 1ответ – 1 балл (4 балла максимально)

    Решение уравнений 1 балл

    Самостоятельная работа – 4 балла