Космические телескопы и их роль. Где находится самый большой телескоп в мире? Самые значимые открытия телескопа «Хаббл»

Вдали от суеты и огней цивилизации, в безлюдных пустынях и на вершинах гор стоят величественные титаны, чей взор всегда направлен на звездное небо. Одни стоят уже десятки лет, а другим только предстоит увидеть свои первые звезды. Сегодня мы узнаем, где находятся 10 самых больших телескопов в мире, и познакомимся с каждым из них отдельно.

10. Large Synoptic Survey Telescope (LSST)

Телескоп находится на вершине Серо-Пачон на высоте 2682 м над уровнем моря. По типу он относится к оптическим рефлекторам. Диаметр основного зеркала составляет 8,4 м. Первый свет (термин, означающий первое использование телескопа по прямому назначению) LSST увидит в 2020 году. А полноценно работать аппарат начнет с 2022 года. Несмотря на то что телескоп находится за пределами США, его строительство финансируют американцы. Одним из них стал Бил Гейтс, который вложил 10 млн долларов. В общей сложности проект будет стоить 400 млн.

Главная задача телескопа - фотографировать ночное небо с периодичностью в несколько ночей. Для этого у аппарата имеется камера на 3,2 гигапикселя. LSST имеет большой угол обзора - 3,5 градуса. Луна и Солнце, к примеру, в том виде, в котором их можно созерцать с Земли, занимают только полградуса. Такие широкие возможности обусловлены внушительным диаметром телескопа и его уникальной конструкцией. Дело в том, что здесь вместо двух привычных зеркал используется три. Это не самый большой телескоп в мире, однако он может стать одним из самых продуктивных.

Научные цели проекта: поиск следов темной материи; картографирование Млечного пути; обнаружение взрывов новых и сверхновых; отслеживание небольших объектов Солнечной системы (астероиды и кометы), в частности тех, которые проходят в непосредственной близости с Землей.

9. Большой южноафриканский телескоп (SALT)

Данный аппарат также представляет собой оптический рефлектор. Он находится в Южно-Африканской республике, на вершине холма, в полупустынной местности близ поселения Сутерланд. Высота телескопа составляет 1798 м. Диметр основного зеркала - 11/9,8 м.

Это не самый большой телескоп в мире, но самый крупный в южном полушарии. Строительство аппарата обошлось в 36 млн долларов. Треть из них выделило правительство ЮАР. Остаток суммы был распределен между Германией, Великобританией, Польшей, Америкой и Новой Зеландией.

Первый снимок установки SALT состоялся в 2005 году, практически сразу после окончания строительных работ. Как для оптических телескопов, его конструкция довольно нестандартна. Однако она получила широкое распространение среди новейших представителей крупных телескопов. Основное зеркало состоит из 91 шестиугольного элемента, каждый из которых имеет диаметр в 1 метр. Для достижения определенных целей и улучшения видимости все зеркала могут регулироваться по углу.

SALT создан для спектрометрического и визуального анализа излучения, исходящего от астрономических объектов, находящихся вне поля видимости телескопов, расположенных в северном полушарии. Сотрудники телескопа наблюдают за квазарами, дальними и близкими галактиками, а также отслеживают эволюцию звезд.

Аналогичный телескоп есть и в Америке - Hobby-Eberly Telescope. Он располагается в пригороде Техаса и практически полностью совпадает по конструкции с установкой SALT.

8. Keck I и II

Два телескопа Keck соединены в систему, которая создает единое изображение. Располагаются они на Гавайях на горе Мауна Кеа. составляет 4145 м. По типу телескопы также относятся к оптическим рефлекторам.

Обсерватория Keck располагается в одном из наиболее благоприятных (с точки зрения астроклимата) мест на Земле. Это значит, что вмешательство атмосферы в наблюдения здесь минимально. Поэтому обсерватория Keck стала одной из наиболее эффективных в истории. И это притом, что самый большой телескоп в мире расположен не здесь.

Основные зеркала телескопов Keck полностью идентичны между собой. Они, подобно телескопу SALT, состоят из комплекса подвижных элементов. Здесь их по 36 на каждый из аппаратов. По форме зеркала представляют собой шестиугольник. Обсерватория может наблюдать за небом в оптическом и в инфракрасном диапазоне. Keck проводит широкий спектр основных исследований. Кроме того, он на сегодняшний день считается одним из наиболее эффективных наземных телескопов по поиску экзопланет.

7. Большой Канарский телескоп (GTC)

Мы продолжаем отвечать на вопрос о том, где находится самый большой телескоп в мире. На этот раз любопытство занесло нас в Испанию, на Канарские острова, а точнее на острове Ла Пальма, где находится телескоп GTC. Высота конструкции над уровнем моря составляет 2267 м. Диаметр основного зеркала - 10,4 м. Это также оптический рефлектор. Возведение телескопа завершилось в 2009 году. Открытие посетил Хуан Карлос I - король Испании. Проект обошелся в 130 млн евро. 90 % суммы выделило правительство Испании. Остальные 10 % были поровну поделены между Мексикой и университетом Флориды.

Телескоп может наблюдать за звездным небом в оптическом и в среднем инфракрасном диапазоне. Благодаря инструментам Osiris и CanariCam он может проводить поляриметрические, спектрометрические и коронографические исследования космических объектов.

6. Обсерватория "Аресибо"

В отличие от предыдущих, данная обсерватория является радиорефлектором. Диаметр основного зеркала составляет (внимание!) 304,8 метра. Находится это чудо техники в Пуэрто-Рико на высоте 497 м над уровнем моря. И это еще не самый большой телескоп в мире. Название лидера вы узнаете чуть ниже.

Гигантский телескоп не единожды попадал в объектив кинокамеры. Помните финальную схватку между Джеймсом Бондом и его противником в картине «Золотой Глаз»? Так вот она проходила именно здесь. Телескоп был запечатлен в научно-фантастическом фильме Карла Сагана «Контакт» и многих других кинолентах. Радиотелескоп фигурировал также в видеоиграх. В частности, в карте Rogue Transmission игрушки Battlefield 4. Столкновение между военными происходит вокруг конструкции, полностью имитирующей Arecibo.

Долгое время считалось, что Arecibo - самый большой телескоп в мире. Фото этого гиганта наверняка видел каждый второй житель Земли. Выглядит он довольно необычно: тарелка огромных размеров, помещенная в естественную покрытая алюминием и окруженная густыми джунглями. Над тарелкой подвешен передвижной облучатель, который держится на 18 тросах. Они, в свою очередь, крепятся на трех высоких башнях, установленных по краям тарелки. Благодаря таким габаритам «Аресибо» может ловить широкий диапазон (длина волны - от 3 см до 1 м) электромагнитного излучения.

Радиотелескоп был введен в эксплуатацию еще в 60-х годах. Он фигурировал в огромном количестве исследований, одно из которых удостоилось Нобелевской премии. В конце 90-х обсерватория стала одним из ключевых инструментов проекта поиска инопланетной жизни.

5. Большой массив в пустыне Атакама (ALMA)

Пришло время рассмотреть самый дорогой из действующих наземных телескопов. Он представляет собой радиоинтерферометр, который находится в на высоте в 5058 м над уровнем моря. Интерферометр состоит из 66 радиотелескопов, которые имеют диаметр в 12 или 7 метров. Проект обошелся в 1,4 млрд долларов. Его финансировали Америка, Япония, Канада, Тайвань, Европа и Чили.

ALMA предназначен для исследования миллиметровых и субмиллиметровых волн. Для аппарата такого рода наиболее благоприятным является высокогорный сухой климат. Телескопы доставлялись на место постепенно. Первая радиоантенна была запущена в 2008, а последняя - в 2013 году. Главная научная цель интерферометра - исследование эволюции космоса, в частности рождения и развития звезд.

4. Гигантский Магеланов телескоп (GMT)

Ближе к юго-западу, в той же пустыне, что и ALMA, на высоте 2516 м над уровнем моря строится телескоп GMT диаметром 25,4 м. По типу он относится к оптическим рефлекторам. Это совместный проект Америки и Австралии.

Основное зеркало будет включать в себя один центральный и шесть окружающих его изогнутых сегментов. Кроме рефлектора, телескоп оснащается адаптивной оптикой нового класса, позволяющей добиться минимального уровня искажений атмосферы. Как результат, снимки будут в 10 раз точнее, чем с космического телескопа «Хаббл».

Научные цели GMT: поиск экзопланет; исследование звездной, галактической и планетарной эволюции; изучение черных дыр и многое другое. Работы по возведению телескопа должны завершиться к 2020 году.

Thirty Meter Telescope (TMT). Данный проект по своим параметрам и целям схож с телескопами GMT и Keck. Он будет находиться на гавайской горе Мауна-Кеа, на высоте 4050 м над уровнем моря. Диаметр основного зеркала телескопа составляет 30 метров. В оптическом рефлекторе TMT применено зеркало, разделенное на множество шестиугольных частей. Только по сравнению с Keck габариты аппарата в три раза больше. Строительство телескопа до сих пор не началось из-за проблем с местной администрацией. Дело в том, что гора Мауна-Кеа является священной для коренных гавайцев. Стоимость проекта составляет 1,3 млрд долларов. В инвестировании примут участие главным образом Индия и Китай.

3. 50-метровый сферический телескоп (FAST)

Вот он, самый большой телескоп в мире. 25 сентября 2016 года в Китае была запущена обсерватория (FAST), созданная для исследования космоса и поиска в нем признаков разумной жизни. Диметр устройства составляет целых 500 метров, поэтому оно получило статус «Самый большой в мире телескоп». Китай начал строительство обсерватории в 2011 году. Проект обошелся стране в 180 млн долларов. Местные власти даже пообещали, что переселят порядка 10 тысяч человек, которые проживают в 5-километровой зоне около телескопа, для создания идеальных условий для мониторинга.

Таким образом, «Аресибо» больше не самый большой в мире телескоп. Китай забрал этот титул у Пуэрто-Рико.

2. Square Kilometer Array (SKA)

Если проект данного радиоинтерферометра благополучно завершится, то обсерватория SKA будет в 50 раз превосходить по мощности крупнейшие из существующих радиотелескопов. Своими антеннами она покроет площадь порядка 1 квадратного километра. По структуре проект напоминает телескоп ALMA, однако по габаритам он значительно превосходит чилийскую установку. На сегодняшний день есть два варианта развития событий: строительство 30 телескопов с антеннами в 200 м или возведение 150-ти 90-метровых телескопов. В любом случае по задумке ученых обсерватория будет иметь протяжность в 3000 км.

SKA будет размещаться сразу на территории двух государств - ЮАР и Австралии. Стоимость проекта составляет порядка 2 млрд долларов. Сумма поделена между 10 странами. К 2020 году планируется завершение проекта.

1. Чрезвычайно большой Европейский телескоп (E-ELT)

В 2025 году на полную мощность выйдет оптический телескоп, который превысит размеры TMT на целых 10 метров и разместится в Чили на вершине горы Серро Армазонес, на высоте в 3060 м. Это будет самый большой оптический телескоп в мире.

Его основное практически 40-метровое зеркало будет включать в себя почти 800 подвижных частей, диаметром в полтора метра каждая. Благодаря таким габаритам и современной адаптивной оптике, E-ELT сможет находить планеты, подобные Земле, и изучать состав их атмосферы.

Самый большой зеркальный телескоп в мире займется также изучением процесса формирования планет и другими фундаментальными вопросами. Цена проекта составляет порядка 1 млрд евро.

Самый большой космический телескоп в мире

Космические телескопы не нуждаются в таких габаритах, как земные, так как за счет отсутствия влияния атмосферы они могут показывать великолепные результаты. Поэтому в данном случае правильнее сказать "самый мощный", а не "самый большой" телескоп в мире. "Хаббл" - космический телескоп, прославившийся на весь мир. Его диаметр составляет без малого два с половиной метра. При этом разрешающая способность аппарата в десяток раз больше, чем если бы он находился на Земле.

На смену "Хабблу" в 2018 году придет более мощный Его диаметр составит 6,5 м, а зеркало будет состоять из нескольких частей. Размещаться, по задумке создателей, "Джеймс Вебб" будет в L2, в постоянной тени Земли.

Заключение

Сегодня мы познакомились с десятком наиболее масштабных телескопов в мире. Теперь вы знаете, какими гигантскими и высокотехнологичными могут быть конструкции, обеспечивающие изучение космоса, а также сколько денег тратится на возведение этих телескопов.

Вид «Хаббла» с борта космического корабля «Атлантис» STS-125

Космический телескоп «Хаббл» (КТХ ; Hubble Space Telescope , HST ; код обсерватории «250») - на орбите вокруг , названная в честь Эдвина Хаббла. Телескоп «Хаббл» - совместный проект НАСА и Европейского космического агентства ; он входит в число Больших обсерваторий НАСА.

Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь - в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7-10 раз больше, чем у аналогичного телескопа, расположенного на Земле.

История

Предыстория, концепции, ранние проекты

Первое упоминание концепции орбитального телескопа встречается в книге Германа Оберта «Ракета в межпланетном пространстве» (Die Rakete zu den Planetenraumen ), изданной в 1923 году.

В 1946 году американский астрофизик Лайман Спитцер опубликовал статью «Астрономические преимущества внеземной обсерватории» (Astronomical advantages of an extra-terrestrial observatory ). В статье отмечены два главных преимущества такого телескопа. Во-первых, его угловое разрешение будет ограничено лишь дифракцией, а не турбулентными потоками в атмосфере; в то время разрешение наземных телескопов было от 0,5 до 1,0 угловой секунды, тогда как теоретический предел разрешения по дифракции для орбитального телескопа с зеркалом 2,5 метра составляет около 0,1 секунды. Во-вторых, космический телескоп мог бы вести наблюдение в инфракрасном и ультрафиолетовом диапазонах, в которых поглощение излучений земной атмосферой весьма значительно.

Спитцер посвятил значительную часть своей научной карьеры продвижению проекта. В 1962 году доклад, опубликованный Национальной академией наук США, рекомендовал включить разработку орбитального телескопа в космическую программу, и в 1965 году Спитцер был назначен главой комитета, в задачу которого входило определение научных задач для крупного космического телескопа.

Космическая астрономия стала развиваться после окончания Второй мировой войны. В 1946 году впервые был получен ультрафиолетовый спектр .Орбитальный телескоп для исследований Солнца был запущен Великобританией в 1962 году в рамках программы «Ариэль», а в 1966 году НАСА запустило в космос первую орбитальную обсерваторию OAO-1. Миссия не увенчалась успехом из-за отказа аккумуляторов через три дня после старта. В 1968 году была запущена OAO-2, которая производила наблюдения ультрафиолетового излучения и вплоть до 1972 года, значительно превысив расчётный срок эксплуатации в 1 год.

Миссии OAO послужили наглядной демонстрацией роли, которую могут играть орбитальные телескопы, и в 1968 году НАСА утвердило план строительства телескопа-рефлектора с зеркалом диаметром 3 м. Проект получил условное название LST (Large Space Telescope ). Запуск планировался на 1972 год. Программа подчёркивала необходимость регулярных пилотируемых экспедиций для обслуживания телескопа с целью обеспечения продолжительной работы дорогостоящего прибора. Параллельно развивавшаяся программа «Спейс шаттл» давала надежды на получение соответствующих возможностей.

Борьба за финансирование проекта

Благодаря успеху программы ОАО в астрономическом сообществе сложился консенсус о том, что строительство крупного орбитального телескопа должно стать приоритетной задачей. В 1970 году НАСА учредило два комитета, один для изучения и планирования технических аспектов, задачей второго была разработка программы научных исследований. Следующим серьёзным препятствием было финансирование проекта, затраты на который должны были превзойти стоимость любого наземного телескопа. Конгресс США поставил под сомнение многие статьи предложенной сметы и существенно урезал ассигнования, первоначально предполагавшие масштабные исследования инструментов и конструкции обсерватории. В 1974 году, в рамках программы сокращений расходов бюджета, инициированной президентом Фордом, Конгресс полностью отменил финансирование проекта.

В ответ на это астрономами была развёрнута широкая кампания по лоббированию. Многие учёные-астрономы лично встретились с сенаторами и конгрессменами, было также проведено несколько крупных рассылок писем в поддержку проекта. Национальная Академия Наук опубликовала доклад, в котором подчёркивалась важность создания большого орбитального телескопа, и в результате сенат согласился выделить половину средств из бюджета, первоначально утверждённого Конгрессом.

Финансовые проблемы привели к сокращениям, главным из которых было решение уменьшить диаметр зеркала с 3 до 2,4 метра, для снижения затрат и получения более компактной конструкции. Также был отменён проект телескопа с полутораметровым зеркалом, который предполагалось запустить с целью тестирования и отработки систем, и принято решение о кооперации с Европейским космическим агентством. ЕКА согласилось участвовать в финансировании, а также предоставить ряд инструментов и для обсерватории, взамен за европейскими астрономами резервировалось не менее 15 % времени наблюдений. В 1978 году Конгресс утвердил финансирование в размере 36 млн долл., и сразу после этого начались полномасштабные работы по проектированию. Дата запуска планировалась на 1983 год. В начале 1980-х телескоп получил имя Эдвина Хаббла.

Организация проектирования и строительства

Работа над созданием космического телескопа была поделена между многими компаниями и учреждениями. Космический центр Маршалла отвечал за разработку, проектирование и строительство телескопа, Центр космических полётов Годдарда занимался общим руководством разработкой научных приборов и был выбран в качестве наземного центра управления. Центр Маршалла заключил контракт с компанией «Перкин-Элмер» на проектирование и изготовление оптической системы телескопа (Optical Telescope Assembly - OTA ) и датчиков точного наведения. Корпорация «Локхид» получила контракт на строительство для телескопа.

Изготовление оптической системы

Полировка главного зеркала телескопа, лаборатория компании «Перкин-Элмер», май 1979 года

Зеркало и оптическая система в целом были наиболее важными частями конструкции телескопа, и к ним предъявлялись особо жёсткие требования. Обычно зеркала телескопов изготавливаются с допуском примерно в одну десятую длины волны видимого света, но, поскольку космический телескоп предназначался для наблюдений в диапазоне от ультрафиолетового до почти инфракрасного, а разрешающая способность должна была быть в десять раз выше, чем у наземных приборов, допуск для изготовления его главного зеркала был установлен в 1/20 длины волны видимого света, или примерно 30 нм.

Компания «Перкин-Элмер» намеревалась использовать новые станки с числовым программным управлением для изготовления зеркала заданной формы. Компания «Кодак» получила контракт на изготовление запасного зеркала с использованием традиционных методов полировки, на случай непредвиденных проблем с неопробированными технологиями (зеркало, изготовленное компанией «Кодак», в настоящее время находится в экспозиции музея Смитсоновского института). Работы над основным зеркалом начались в 1979 году, для изготовления использовалось стекло со сверхнизким коэффициентом теплового расширения. Для уменьшения веса зеркало состояло из двух поверхностей - нижней и верхней, соединённых решётчатой конструкцией сотовой структуры.

Резервное зеркало телескопа, Смитсоновский музей авиации и космонавтики, Вашингтон

Работы по полировке зеркала продолжались до мая 1981 года, при этом были сорваны первоначальные сроки и значительно превышен бюджет. В отчётах НАСА того периода выражаются сомнения в компетентности руководства компании «Перкин-Элмер» и её способности успешно завершить проект такой важности и сложности. В целях экономии средств НАСА отменило заказ на резервное зеркало и перенесло дату запуска на октябрь 1984 года. Окончательно работы завершились к концу 1981 года, после нанесения отражающего покрытия из алюминия толщиной 75 нм и защитного покрытия из фторида магния толщиной в 25 нм.

Несмотря на это, сомнения в компетентности «Перкин-Элмер» оставались, поскольку сроки окончания работ над остальными компонентами оптической системы постоянно отодвигались, а бюджет проекта рос. Графики работ, предоставляемые компанией, НАСА охарактеризовало как «неопределённые и изменяющиеся ежедневно» и отложило запуск телескопа до апреля 1985 года. Тем не менее, сроки продолжали срываться, задержка росла в среднем на один месяц каждый квартал, а на завершающем этапе росла на один день ежедневно. НАСА было вынуждено ещё дважды перенести старт, сначала на март, а затем на сентябрь 1986 года. К тому времени общий бюджет проекта вырос до 1,175 млрд долл.

Космический аппарат

Начальные этапы работ над космическим аппаратом, 1980

Другой сложной инженерной проблемой было создание аппарата-носителя для телескопа и остальных приборов. Основными требованиями были защита оборудования от постоянных перепадов температур при нагреве от прямого солнечного освещения и охлаждения в тени Земли и особо точное ориентирование телескопа. Телескоп смонтирован внутри лёгкой алюминиевой капсулы, которая покрыта многослойной термоизоляцией, обеспечивающей стабильную температуру. Жёсткость капсулы и крепление приборов обеспечивает внутренняя пространственная рама из углепластика.

Хотя работы по созданию космического аппарата проходили более успешно, чем изготовление оптической системы, «Локхид» также допустила некоторое отставание от графика и превышение бюджета. К маю 1985 года перерасход средств составил около 30 % от первоначального объёма, а отставание от плана - 3 месяца. В докладе, подготовленном Космическим центром Маршалла, отмечалось, что при проведении работ компания не проявляет инициативу, предпочитая полагаться на указания НАСА.

Координация исследований и управление полётом

В 1983 году, после некоторого противоборства между НАСА и научным сообществом был учреждён Научный институт космического телескопа. Институт управляется Ассоциацией университетов по астрономическим исследованиям (Association of Universities for Research in Astronomy ) (AURA) и располагается в кампусе университета Джонса Хопкинса в Балтиморе, штат Мэриленд. Университет Хопкинса - один из 32 американских университетов и иностранных организаций, входящих в ассоциацию. Научный институт космического телескопа отвечает за организацию научных работ и обеспечение доступа астрономов к полученным данным; эти функции НАСА хотело оставить под своим контролем, но учёные предпочли передать их академическим учреждениям.

Европейский координационный центр космического телескопа был основан в 1984 году в городе Гархинг, Германия для предоставления аналогичных возможностей европейским астрономам.

Управление полётом было возложено на Центр космических полётов Годдарда, который находится в городе Гринбелт, Мэриленд, в 48 километрах от Научного института космического телескопа. За функционированием телескопа ведётся круглосуточное посменное наблюдение четырьмя группами специалистов. Техническое сопровождение осуществляется НАСА и компаниями-контакторами через Центр Годдарда.

Запуск и начало работы

Старт шаттла «Дискавери» с телескопом «Хаббл» на борту

Первоначально запуск телескопа на орбиту планировался на октябрь 1986 года, но 28 января приостановила программу «Спейс шаттл» на несколько лет, и запуск пришлось отложить.

Всё это время телескоп хранился в помещении с искусственно очищенной атмосферой, его бортовые системы были частично включены. Расходы на хранение составляли около 6 млн долл. в месяц, что ещё больше увеличило стоимость проекта.

Вынужденная задержка позволила произвести ряд усовершенствований: солнечные батареи были заменены на более эффективные, был модернизирован бортовой вычислительный комплекс и системы связи, а также изменена конструкция кормового защитного кожуха с целью облегчить обслуживание телескопа на орбите.Кроме того, программное обеспечение для управления телескопом было не готово в 1986 году и фактически было окончательно написано только к моменту запуска в 1990 году.

После возобновления полётов шаттлов в 1988 году запуск был окончательно назначен на 1990 год. Перед запуском накопившаяся на зеркале пыль была удалена при помощи сжатого азота, а все системы прошли тщательное тестирование.

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в Липперсгей . Также создание телескопа приписывается его современнику Захарию Янсену .

История

Годом изобретения телескопа, а вернее зрительной трубы , считают 1607 год , когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге . Тем не менее в выдаче патента ему было отказано в силу того, что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара , уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент . Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году . В «Дополнениях в Вителлию», опубликованных в 1604 г., Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причём как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи , датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилео Галилей . В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями . Тем не менее, с его помощью Галилей сделал ряд открытий.

Название «телескоп» предложил в 1611 году греческий математик Иоаннис Димисианос (Giovanni Demisiani-Джованни Демизиани) для одного из инструментов Галилея, показанного на загородном симпосии Академии деи Линчеи . Сам Галилей использовал для своих телескопов термин лат. perspicillum .

«Телескоп Галилея», Музей Галилея (Флоренция)

В 20-м веке также наблюдалось развитие телескопов, которые работали в широком диапазоне длин волн от радио до гамма-лучей. Первый специально созданный радиотелескоп вступил в строй в 1937 году. С тех пор было разработано огромное множество сложных астрономических приборов.

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке , снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр . Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра . В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом , а сам телескоп превращается в астрограф . Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).

По своей оптической схеме большинство телескопов делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало, а для компенсации его аберраций служат линзы.

Это может быть одиночная линза (система Гельмута), система линз (Волосова-Гальперна-Печатниковой, Бэйкер-Нана), ахроматический мениск Максутова (одноимённые системы), или планоидная асферическая пластина (системы Шмидта, Райта). Иногда главному зеркалу придают форму эллипсоида (некоторые менисковые телескопы), сплюснутого сфероида (камера Райта), или просто немного фигуризованную неправильную поверхность. Этим удаётся остаточные аберрации системы.

Кроме того, для наблюдений за Солнцем профессиональные астрономы используют специальные солнечные телескопы , отличающиеся конструктивно от традиционных звёздных телескопов.

Радиотелескопы

Радиотелескопы Very Large Array в штате Нью-Мексико, США

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприёмник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приёмников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры . При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array ). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy ), включённый в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм - 30 ) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей : высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению . Примером такой системы может служить телескоп CACTUS .

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды , инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить Южнополярный телескоп (англ. South Pole Telescope ), установленный на южном географическом полюсе , работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики , позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы , или в воздух на самолётах или стратосферных баллонах . Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом : φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа

Его появление в 2025 году знаменует настоящий прорыв в астрономии. Диаметр зеркала превысит втрое самый большой на сегодня и составит 10 метров.

Российские учёные начали работу над созданием телескопа под названием «Миллиметрон», не имеющего аналогов в мире ни по размеру, ни по мощности. Об этом сообщает «Российская газета ». Его появление станет хорошими новостями для науки и знаменует настоящий прорыв в астрономии. Это будет самый крупный подобный объект в истории. Его точность поражает воображение: в миллиард раз лучше, чем у глаза человека.

В основе работы телескопа будет лежать большое зеркало диаметром 10 метров. Для сравнения, у самого крупного подобного объекта «Гершель» этот показатель втрое меньше. Зеркало будет представлять собой более 20 своего рода лепестков, каждый из которых в свою очередь будет разделён на три дольки. Все эти части будут подвижными для возможности настройки и корректировки телескопа. Зеркальная поверхность будет выполнена с ювелирной точностью: допустимое отклонение составляет всего 10 микрон (0,01 миллиметра). Радиус действия телескопа составит полтора миллиона километров.

Интересно, что при создании подобных аппаратов часто возникают сложные научные задачи, о которых рядовой читатель хороших новостей и не догадывается. Например, важнейшей проблемой для учёных является охлаждение поверхности зеркала до температуры -268°C. Это необходимо поскольку аппарат сильно нагреется от солнца и начнёт сам излучать тепло, которое в свою очередь создаст непреодолимые помехи для приёма сигналов из далёкого космоса. Для охлаждения на «Миллиметроне» будут установлены пять защитных экранов и мощная охлаждающая установка, работающая на солнечной энергии.

Отдельной сложной задачей является доставка такого чуда техники на околоземную орбиту. С Земли телескоп отправится в компактном собранном состоянии, а уже в космическом пространстве раскроются, подобно цветку с многочисленными лепестками.

Что же даст нам, землянам, создание и отправка в космос столь грандиозного научно-исследовательского аппарата? Прежде всего, он позволит изучать пространство Вселенной почти во всех диапазонах волн (рентгеновские лучи, инфракрасные, гравитационные волны, гамма-лучи и другие). При этом он будет работать с максимально возможным на данный момент угловым разрешением . Последние научные данные свидетельствуют, что космос - не пустое пространство. Напротив, он буквально нашпигован различными объектами. Их плотность учёные сравнивают с содержимым банки красной икры. Однако изучить все эти пока непонятные для людей объекты можно лишь обладая современным аппаратом, которого пока в мире нет.

Что будет изучать телескоп «Миллиметрон»

  • Чёрные дыры. В последнее время ряд астрономов заявили, что они не существуют вовсе. «Есть ли они в реальности?» - на этот вопрос ответит «Миллиметрон».
  • Процесс образования звёзд и планет, а параллельно с этим поиск внеземной жизни.
  • Как эволюционируют галактики после Большого Взрыва.
  • Так называемые «тёмную материю» и «невидимую энергию». Их существование предполагают некоторые астрономы, но узнать об этих явлениях подробнее пока не получается.

Запуск телескопа «Миллиметрон» планируется произвести к 2025 году. Сейчас работы по его созданию уже начаты. Напомним, что в данный момент на околоземной орбите расположен другой телескоп, по преимуществу разработанный в России - «Радиоастрон ». Он был запущен в 2011 году и продолжит работать даже после запуска своего собрата. Самым мощным телескопом в мире пока считается американский «Хаббл».

Человека всегда волновали тайны мироздания. Когда появилась наша вселенная? Как давно? Существуют ли другие планеты, похожие на Землю? Вопросов огромное количество, и астрономы с помощью своих приборов всегда пытались увидеть в космосе больше, дальше и отчётливей.

Осуществлять наблюдение с поверхности нашей планеты в целом достаточно удобно. Надо просто выбрать место с атмосферой, не загрязнённой различными выбросами. Линзу телескопа можно сделать настолько большой, насколько позволяют имеющиеся технологии. Осталось только автоматизировать процесс наблюдения и записи результатов. И, казалось бы, всё, готовься узнать все тайны мира. Однако перед исследователями возникает большая проблема, связанная с поглощением земной атмосферой приходящего из космоса инфракрасного и ультрафиолетового излучения. Между тем, в этом невидимом человеческим глазом волновом диапазоне содержится огромный объём информации, помогающей понять сущность происходящих процессов.

Лайман Спитцер

Идею создания средства наблюдения, картинка которого не подвержена искажению земной атмосферой, впервые выдвинул Герман Оберт в 1923 году. В то время такие перспективы казались очень далёким будущим. Однако уже в 1946 году в работе астрофизика Лаймана Спитцера были сформулированы основные принципы функционирования внеземной обсерватории. В качестве основного рабочего элемента предлагалось использовать не систему линз, как в обычных земных телескопах, а огромное зеркало, которое будет собирать на своей поверхности потоки исходящего излучения. При этом на точность наблюдения будет влиять только ровность зеркальной поверхности без каких-либо привнесённых искажений, вызванных турбулентными потоками земной атмосферы. Ну и конечно такой телескоп мог бы работать во всех интересующих диапазонах.

Период от формулирования идеи до её воплощения составил более 40 лет. Ведь сначала необходимо было детально отработать процедуру вывода телескопа на околоземную орбиту, да и инструменты, позволяющие с огромной точностью отполировать поверхность зеркала, появились только в 60-х годах прошлого века.

Первопроходцем в сфере создания больших космических телескопов по праву считается американская корпорация НАСА. Начиная с 1962 года она вплотную занималась созданием универсальных средств наблюдения. Первые орбитальные астрономические обсерватории (ОАО) были достаточно громоздкими и не имели устойчивых каналов связи с центром управления для передачи накопленной информации. Но даже эта несовершенная техника позволила сделать ряд научных открытий. Например, впервые была сфотографирована и изучена ультрафиолетовая спектрограмма Солнца.

Телескоп Хаббл

Следующим шагом должна была стать разработка телескопа с большим зеркалом, которое можно было бы использовать для изучения удалённых галактик и планет. Его строительство продолжалось около 15 лет, а стоимость была настолько велика, что НАСА пришлось обращаться за помощью к Европейскому космическому агентству. В результате на орбиту он был выведен только в 1990 году. Телескоп получил имя американского учёного Эдвина Хаббла, который разработал концепцию расширяющейся Вселенной.

Первые результаты работы нового космического телескопа оказались просто ошеломляющими. Невозможная ранее разрешающая способность, позволяющая без всяких искажений получить отчётливое изображение далёких планет, произвела настоящий фурор в научном сообществе. С помощью «Хаббла» удалось в деталях рассмотреть процесс столкновения кометы Шумейкера-Леви с Юпитером, получить чёткие изображения поверхности Плутона, обнаружить ранее неизвестные планеты, находящиеся вне солнечной системы.

Фрагмет туманности Киля, сфотографированной телескопом Хаббл в 2010 году

Срок службы космического телескопа «Хаббл» заканчивается в 2014 году. Ему на смену должен прийти новый аппарат, строительство которого уже вовсю ведётся НАСА и Европейским космическим агентством. Участвуют в разработках и российские учёные. Планируется, что новый телескоп получит имя Джеймса Вебба, талантливейшего американского учёного, внёсшего огромный вклад в изучение теории происхождении нашего мира.

Диаметр зеркала нового телескопа будет равен 6,5 метров (у «Хаббла» - 2,5 м). Для его защиты от солнечной радиации предполагается развернуть огромный отражающий экран, целью которого будет отведение лишнего тепла от измерительных датчиков. Телескоп сможет заглянуть ещё дальше во вселенную, уловить излучение самых далёких звёзд. Поэтому неслучайно, что основной целью выведения его на орбиту считается проведение целого комплекса наблюдений в отношении планетарных систем вне нашей галактики, изучение их физико-химических параметров и определение возможности существования на них органической жизни. С помощью нового телескопа учёные будут стремиться доказать, что мы не одиноки во вселенной.