Единицы измерения и дозы радиации. Как измерить уровень радиации в квартире? Определитель радиации

Сегодня слово «радиация» вызывает страх у многих людей. Все мы помним о трагедии на Чернобыльской АЭС, когда от излучения пострадали сотни тысяч человек. Насколько опасна радиация и как ее измерить – рассмотрим в данной статье.

Что представляет собой радиация

Радиацией называется появляющееся в результате радиоактивного распада ионизирующее излучение. Оно может быть нескольких видов, а потому для его измерения применяются различные приборы. Существуют специальные единицы измерения, и в случае, если уровень радиации превышает определенные нормы, то облучение может быть смертельным для человека.

Рассмотрим основные источники радиации:

  1. Более 70 процентов приходится на долю природных радиоактивных веществ, которые окружают человека.
  2. Медицинским процедурам в данном списку отводится чуть более 10 процентов.
  3. Немного больший процент от общего уровня радиации приходится на космическое излучение.

Где чаще всего проводят замеры радиации и с какой целью это делается

Проверка на радиацию осуществляется при помощи специальных приборов – дозиметров. Они позволяют с высокой точностью определить интенсивность излучения на определенном месте. Чаще всего измерение радиации происходит в следующих местах:

  1. Если недалеко от исследуемого района находится зона с повышенным радиационным излучением. Речь идет о той же ЧАЭС.
  2. Во время путешествий и походов дозиметры могут использоваться для обследования неизвестных территорий.
  3. Перед строительством жилого объекта.
  4. При приобретении объектов жилого фонда.

Важно! Поскольку очистить от радиации как саму территорию, так и расположенные на ней объекты, является невозможным, то максимум, что можно сделать в данной ситуации – это измерить уровень облучения. Если он превышает максимально допустимый, то людям рекомендуется избегать зараженного участка.

Единицы измерения радиации

Контроль радиационного излучения предполагает не только определение уровня радиации, но и соотнесение его с определенными нормами, прописанными в соответствующих законах. Поэтому производители большинства видов продукции должны в соответствии с законодательством предоставлять документацию на соответствие конечного продукта определенным нормам.

О том, что радиационный фон вездесущ, известно довольно давно. Однако в большинстве мест уровень радиации попросту считается безопасным. Измеряют его в определенных показателях, наиболее популярными среди которых являются дозы. Это единицы энергии, которые вещество способно поглотить при прохождении через него такого излучения.

Многих людей интересует, в чем измеряется радиация. Рассмотрим основные виды доз в соответствии с единицами их измерения:

  1. Экспозиционная доза, которая имеет место быть при рентгеновском или гамма-излучении. Такие дозы показывают степень ионизации воздуха. Внесистемными единицами измерения такого излучения являются рентген или бэр. Если же говорить о классификации, принятой в международной системе СИ, то единицами измерения экспозиционной дозы выступает кулон на килограмм.
  2. Эффективная доза. Ее определяют для каждого органа в строго индивидуальном порядке. Единицей измерения в данном случае выступает зиверт. Термин «эффективная доза» широко применяется в медицине.
  3. Для поглощенной дозы существует единица измерения – грэй.
  4. Эквивалентная доза зависит от вида излучения. Ее расчет производится в зависимости от коэффициентов.

Радиационное излучение: уровни безопасности

Существуют строго определенные уровни безопасных величин радиации для человека. Каждой территории свойственен определенный радиационный фон. Безопасным и наиболее приемлемым для человека считается показатель в 20 микрорентген в час (0,2 микрозиверт в час). Наивысшим же пределом, который не способен причинить вреда человеческому организму, считается 50 микрорентген в час. Все, что выше данного уровня, является потенциально опасным для здоровья и находиться в подобных радиоактивных зонах нельзя.

Считается, что без особого вреда здоровью человек способен вынести излучение с мощностью до 10 микрозиверт. Если же время воздействия сокращается до минимума, то безвредным может считаться и облучение, силой несколько миллизивертов в час. К примеру, именно таким воздействием обладает рентген или флюорография, уровень радиации которых доходит до трех миллизивертов. Естественно, что длительность такого воздействия на человека должна быть минимальной.

Снимок зуба, выполняемый стоматологом, имеет мощность около 0,2 миллизивертов в час.

Важно! Поглощая облучение, человеческое тело способно накапливать уровень радиации в течение всей жизни. При этом суммарный порог в 700 миллизивертов не должен быть пересечен.

Какие последствия могут быть от облучения

При воздействии радиации на человека возникает облучение. Оно проявляется в виде острой лучевой болезни, которой свойственны разные степени тяжести. Проявляется она уже при облучении дозой радиации, которая равна одному зиверту. Повышение дозы до двух зивертов уже способно увеличить риск развития онкологии, а при трех зивертов существенно возрастает риск летального исхода.

Важно! Основными симптомами лучевой болезни является понос, потеря сил, рвота. Также возможны проявления в виде сухого надсадного кашля и нарушений сердечной деятельности.

Облучение способно вызывать появление лучевых ожогов. При очень больших дозах может происходить отмирание кожи, а также существенные повреждения костей и мышц. В последнем случае лечение будет значительно сложнее тепловых или химических ожогов. Помимо ожогов могут проявляться проблемы в виде нарушения обменных процессов, инфекционные осложнения, лучевая катаракта и даже бесплодие.

Возможен также стохастический эффект, при котором облучения проявляются спустя длительный промежуток времени. Проявляется он в виде раковых опухолей, которые возникают у облученных людей крайне часто. Некоторые ученые считают, что здесь имеют место быть также и генетические эффекты, но при проведении исследований, связанных с 80 тысячами детей, которые родились у японцев, переживших атомную бомбардировку Нагасаки и Хиросимы, не было выявлено увеличение уровня наследственных заболеваний.

Как уже говорилось выше, по статистике, радиация способна повышать уровень онкологических заболеваний, но прямое влияние облучения при этом выявить очень сложно. Ведь рак может быть спровоцирован деятельностью вирусов, химических веществ и т. д. К примеру, после бомбардировки Хиросимы проявление первых побочных эффектов произошло спустя десяток лет.

Важно! На данный момент ученые обнаружили прямую зависимость от облучения рака щитовидной и молочной железы. Также радиация способна провоцировать онкологию в некоторых частях кишечника.

Приборы для измерения радиации

Для измерения уровня радиационного фона используют специальный прибор, именуемый дозиметром. В зависимости от сложности исполнения можно выделить 2 группы приборов – бытовые и профессиональные.

Бытовой дозиметр

Как правило, представляет собой компактный прибор для ношения в кармане или в виде браслета. Работает от батареек или аккумулятора, в случае обнаружения излучения подает звуковой или световой сигнал.

Широко используется туристами, путешественниками и в быту для определения уровня радиации различных предметов обихода, продуктов, стройматериалов в домашних условиях и путешествиях.

Важно! Ввиду особенностей конструкции, бытовой дозиметр чаще всего способен измерять только определенный вид излучения (например могут улавливать альфа или бета частицы), и не может быть использован для контроля выброса сложных соединений и частиц.

Профессиональные дизиметры


Заключение

Радиационное облучение является крайне опасным для жизнедеятельности человека. При этом речь идет только о превышении допустимой нормы, ведь определенный радиационный фон присутствует везде.


Число попаданий рентгеновских и гамма-фотонов на CMOS-матрицу в минуту, зафиксированное смартфонами при различной мощности дозы излучения. Линейная зависимость свидетельствует о том, что на основании этих измерений может быть определена доза излучения.

Зависимость числа попаданий рентгеновских и гамма-фотонов на CMOS-матрицу в минуту, зафиксированных смартфоном Apple iPhone 4S, от его ориентации

Зависимость числа попаданий рентгеновских и гамма-фотонов на CMOS-матрицу в минуту, зафиксированных смартфоном Samsung Galaxy S2, от его ориентации

Количество пользователей смартфонов неуклонно растет, и в текущем году в их число, вероятно, будет входить четверть населения земного шара. Столь же стремительно развивается рынок мобильных приложений, стремящихся с максимальной эффективностью использовать аппаратные возможности мобильных устройств. Не удивительно, что разработчики обратили внимание на особенность встроенных камер, позволяющую зафиксировать радиоактивное излучение… Но обо всем по порядку.

Для того, чтобы из смартфона получился хороший дозиметр, его отклик на различные дозы радиации должен быть линейным. Устройство должно быть хорошо откалибровано и его показания должны воспроизводиться при повторяющихся измерениях. Кроме того, результат не должен зависеть от ориентации смартфона относительно источника излучения.

ANSTO располагает специализированной установкой для калибровки инструментов (Instrument Calibration Facility, ICF), в состав которой входит ряд и подвижная платформа. Каждый из источников способен обеспечить интенсивность излучения в определенном диапазоне. Когда оператор вводит необходимую мощность дозы , система выбирает подходящий источник, рассчитывает расстояние от него, на котором мощность дозы будет именно такой, и сдвигает на это расстояние передвижную платформу с калибруемым прибором.

Смартфоны с закрытыми черной пленкой камерами измеряли дозы в диапазоне от 1 до 349 796 мк Зв /ч (для рентгеновского и гамма излучения зиверт и грей — эквивалентные единицы измерения, подробнее об измерениях дозы и мощности радиоактивного излучения читайте в статье «Лекарство от радиофобии »). Каждый из смартфонов подвергался воздействию излучения определенной интенсивности в течение одной минуты. Измерения повторялись пять раз, а затем интенсивность менялась для следующей пятерки замеров. В ходе замеров при одинаковой интенсивности излучения смартфон вращали вокруг собственной оси, чтобы выявить влияние ориентации на показания программного дозиметра.

Линейный отклик был достигнут при мощности свыше 20 мкГр/ч для смартфона Samsung и 30 мкГр/ч — Apple. Для сравнения, во время авиаперелета пассажир за час получает дозу радиации около 7 мкГр. Худшие результаты, продемонстрированные iPhone, объясняются тем, что приложение использует для измерений фронтальную камеру, на которую может попадать свет от экрана iPhone, преломленный стеклом, защищающим дисплей.

Интенсивность излучения, при которой смартфоны оказались способны точно рассчитать мощность дозы, обеспечивает годовую дозу радиации 0,2 Зв — это в 200 раз выше того предела, который Австралийское агентство радиационной защиты и ядерной безопасности (ARPANSA) считает приемлемым для человека. Фактически же 1 мЗв, допускаемый ARPANSA, это нижний предел годовой дозы радиации, получаемой жителями Земли, в среднем эта величина составляет 2,4 мЗв с разбросом от 1 до 10 мЗв.

Чтобы получить годовую допустимую дозу радиации (по версии ARPANSA), нужно подвергаться излучению с интенсивностью 20 мкГр/ч примерно 50 часов, краткосрочное его воздействие не опасно. Приложение Radioactivity Counter позволит пользователю вовремя убраться подальше от источника радиации. Матрицы камер смартфонов достаточно чувствительны, чтобы зафиксировать значительное с точки зрения радиационной безопасности излучение. Как показали исследования, ориентация смартфона не играет роли при измерении поглощенной дозы радиации.

На человека в повседневной жизни воздействует различное по природе радиационное излучение – естественная и искусственная радиация.

Допустимые дозы регламентируются нормативными документами. Превышение допустимой дозы может иметь серьезные последствия.

Особенно опасно, если радиоактивный источник находится в жилой квартире и оказывает постоянное воздействие на организм проживающих в ней людей.

Источником радиации в квартире являются строительные материалы, предметы обихода, бытовая техника, измерительные приборы, содержащие вещества с нестабильным ядром.

Входящие в состав стройматериалов (бетона, кирпича, облицовочной плитки) компоненты могут содержать определенное количество урана и тория, входящего в состав горных пород.

Радиоактивностью обладают вулканические породы – гранит, базальт. И если защитой от α-частиц служат даже бумажные обои, то β- и γ-излучение опасно для здоровья жильцов.

При строительстве и капитальном ремонте жилья специальные службы следят за радиоактивностью используемых строительных материалов.

Песок, гравий, щебень, бутовый или пиленый камень, цемент, кирпич способны содержать радиоактивные изотопы. В зависимости от назначения объекта строительства, допустимые нормы удельной радиоактивности различны:

Эффективность дозы γ-излучения внутри квартиры, согласно нормативным документам, не должна превышать дозу излучения снаружи больше, чем на 0,2 мкЗв/ч. Для удешевления стоимости стройматериалов вместо натуральных компонентов применяются продукты переработки фосфорсодержащих руд (кальциево-силикатный шлак, фосфогипс) которые имеют на 30% большую объемную радиоактивность, чем, например, природный гипс.

Кроме строительных и облицовочных материалов радиоактивным источником в жилом помещении может стать радон – газ, выделяющийся при распаде радиоактивных веществ, и дочерние продукты его распада. Через разломы и трещины в земной коре, газ выходит на поверхность. Так как он в 7 раз тяжелее воздуха, то скапливается в низинах, распадках, подвальных помещениях и нижних этажах домов.


В среднем, за год эквивалентная удельная активность для радона и продуктов его распада в квартире не должна превышать 100Бк/м 3 . В Российской Федерации допустимые уровни радиации регламентированы в «Нормах радиационной безопасности (НРБ-99)».

Радон оказывает повреждающее действие на ткани легких в виде пара воды, с растворенным в ней радоном. При замере уровней содержания радона в разных жилых помещениях установлено, что в ванной комнате его содержание в 38 раз выше, чем в комнатах.

Источником радиации могут стать вывезенные мародерами из Чернобыльской зоны отчуждения ценные и антикварные предметы, а также изделия из древесины, строительный лес. Только за минувший год из зоны отчуждения было вывезено с целью перепродажи бытовых предметов, металла и продовольственной продукции на сумму, превышающую 20 млн. долларов.

Радиация не имеет ни вкуса, ни запаха, поэтому человек с помощью органов чувств не может определить, насколько безопасно находиться в квартире, и есть ли в ней источники радиации. Помочь измерить радиационный уровень могут специальные службы санэпиднадзора или ЦЭПЧС (Центр экстренной помощи в чрезвычайных ситуациях).

Услуга является платной и включает:

  • замеры содержания радона;
  • поиск радиоисточников в квартире;
  • устранение источников радиации и их утилизация.

Проверить радиационный уровень в квартире можно и самостоятельно.

Как самостоятельно измерить радиацию?

Сегодня в продаже есть бытовые дозиметры, с помощью которых можно самостоятельно определить уровень радиации и найти ее источник. От профессиональных моделей бытовой дозиметр отличается пределами измерения и погрешностью.


Если профессиональный прибор измеряет уровень радиации в пределах 0,05-999 мкЗв/ч с допустимой погрешностью не более 7%, то бытовой только до 100 мкЗв/ч, а погрешность при измерении составляет около 30%.

Бытовой дозиметр работает от аккумулятора или батареек, имеет компактные размеры и жидкокристаллический индикатор. С его помощью можно измерить только радиационный фон в квартире, для измерения радиоактивности продуктов питания требуется прибор, измеряющий уровень радиации в микрорентгенах. Бытовой дозиметр-радиометр показывает дозу радиации от 10 до 10000 мкР/ч.

Современные индивидуальные дозиметры – это Соэкс-01М, ДКГ-РМ1904А или дозиметры-радиометры – МКС-05 «ТЕРРА-П», (RADEX)МКС-1009. Владельцы смартфонов могут измерить уровень радиации с помощью специального детектора для смартфонов и планшетов Gamma Sapiens. Он работает с аппаратами по каналу Bluetooth и постоянно передает данные замеров в режиме реального времени на iPhone/iPad, смартфон или планшет ОС Android.

Разработчики программ для смартфонов Rolf-Dieter Klein создали приложение Radioactivity Counter, с помощью которого владелец аппарата без дополнительных детекторов может определить уровень γ-излучения в пределах от 1мкЗв/ч до 100 Зв/ч.

Начинать замеры радиационного фона необходимо с открытого пространства – на улице. Полученный результат будет «контрольным». Затем следует измерить радиационный фон в квартире, и если он не будет превышать «контрольный» более чем в 2 раза, то в квартире нет источников радиации.

Если показатель выше, то следует пройтись вдоль стен помещения, поднося к ним и к полу дозиметр. Превышение «контроля» в 10 и более раз свидетельствует о том, что в этом месте, возможно, находится источник радиации. Чтобы удостовериться в правильности измерений, нужно придвигать и отодвигать дозиметр от объекта.

Изменение показаний подтвердит подозрения. Следует помнить, что для измерения уровня радиации бытовому прибору требуется 15-20 с. Нужно держать дозиметр в каждой точке не менее этого времени и только затем переходить к другому объекту.

При получении тревожных результатов необходимо вызвать МЧС, ЦЭПЧС или службу санэпиднадзора для точного определения уровня радиации, источника и профессиональной его утилизации.

Радиация окружает нас всегда, существует естественный и искусственный радиационный фон. Единиц измерения радиации несколько. Наиболее часто используются - зиверты [Зв], именно в них указывается доза радиации в бытовых дозиметрах.

Радиоактивностью называют способность некоторых веществ к самопроизвольному распаду их ядра с выделением при этом процессе энергии, которая, в свою очередь, и называется радиацией. Она способна воздействовать на различные вещества, изменяя их заряд, превращая их в ионы. Чтобы разобраться, в каких единицах измеряется радиация, нужно определиться, с какой стороны будет рассматриваться это физическое явление.

Радиация может быть нескольких различных видов, каждый из которых характеризуется собственными поражающими факторами. Радиационный фон, который присутствует на Земле, подразделяется на естественный (имеющий природное происхождение) и искусственный (имеющий техногенное происхождение). Так, любой человек постоянно находится в поле того или иного источника радиации.

Реакция ядерного распада широко применяется для получения энергии. На её основе построены все АЭС. Ядерное топливо обладает поразительной эффективностью и энергоёмкостью. Так, чтобы нагреть 100 тонн воды, потребуется радиоактивный изотоп массой всего лишь 1 г.

Радиационные волны подразделяются на:

  • бета-волны;
  • гамма-волны;
  • нейтронное излучение.

Альфа-излучение возникает при ядерном распаде тяжёлых химических элементов, среди которых уран, радий, торий и прочие. Их зона поражения ограничена небольшим расстоянием, считаемым от места возникновения: в воздухе - примерно 8−10 см, в биологических средах - всего лишь 0,01−0,05 мм.

Альфа-волны не могут проникнуть даже сквозь лист обыкновенной бумаги и клетки ороговевшего эпителия. Однако если частицы всё же попадут в человеческих организм, например, посредством участков кожи с нарушенной целостностью покровов или через ротовую полость, то, проникнув в кровяное русло, они разнесутся по всему организму и осядут преимущественно в эндокринных железах и лимфатических узлах, что приведёт к внутреннему отравлению, тяжесть которого будет зависеть от полученной дозы.

Бета-излучение представляет собой поток электронов при ядерном распаде радиоактивных элементов. Бета-частицы способны проникать в человеческих организм на расстояние до 20 см. Бета-излучение нашло широкое применение в лучевой терапии при лечении онкологических заболеваний.

Нейтронное излучение - поток электрически нейтральных частиц. Для него характерны наибольшая сила и глубина проникновения. Данные волны применяются в качестве ускорителя других частиц в научных целях на промышленных предприятиях, а также в различных лабораторных исследованиях.

Также обладает достаточно высокой проникающей способностью. Оно не несёт в себе заряженных частиц и, следовательно, не попадает под действие магнитных и электрических полей. Применяется в следующих областях:

  1. Медицина: лучевая терапия.
  2. Пищевая промышленность: консервирование.
  3. Отрасль космической промышленности.
  4. Геофизические исследования.

Гамма-частицы способны вызывать острую лучевую болезнь (ОЛБ) при единичных больших дозах облучения, и хроническую - при длительном воздействии ионизирующего фактора.

Измерение радиационного излучения

При слове «радиация» у многих людей в мозге возникает картины страшной аварии на Чернобыльской АЭС. Однако люди каждый день подвергаются воздействию тех или иных ионизирующих факторов. Для измерения этого ионизирующего излучения существует ряд приборов. Соответственно, существуют и единицы измерения, и допустимые нормы радиационного фона.

К основным источникам радиации относятся:

  • природные радиоактивные вещества, окружающие человека (70%);
  • медицинские аппараты: рентген, томограф и прочие (10%);
  • космическая (именно от неё человечество защищает озоновый слой) (15%);
  • бытовые электроприборы (5%).

Проверку на величину радиационного фона и силу излучения проводят с помощью специальных , которые позволят с точностью определить, насколько интенсивно излучение в исследуемом участке. Чаще всего замеры проводят в следующих местах и случаях:

  • при наличии рядом явного источника радиационного заражения (вблизи атомных электростанций);
  • во время путешествий и походов по неизвестной территории, где рядом может находиться радиоактивный источник;
  • перед строительством жилого дома или при приобретении квартиры.

Необходимо помнить, что очистить заражённый участок практически невозможно (период полураспада многих радиоактивных элементов составляет миллионы и миллиарды лет). Соответственно, всё, что можно сделать, измерив радиационный фон и обнаружив, что он превышает предельно допустимый, как можно скорее покинуть заражённое место.

Единицы измерения радиации

Контроль ионизирующего излучения предполагает проведение замеров с последующим соотнесением результатов с определёнными нормами, прописанными в нормативно-правовых документах. Эти же документы регулируют, например, то, что поставщики определённой продукции должны предоставлять данные о её соответствии определёнными нормам, касательно ионизирующего излучения.

Любое место имеет радиационный фон. Однако в большинстве мест уровень радиации считается безопасным. Самый популярный её показатель - доза, единица энергии, которую способно поглотить вещество при прохождении через него радиоактивного излучения. Основные виды доз и их предельно допустимые значения:

Таким образом, на вопрос, в чём измеряется излучение, нельзя ответить однозначно, так как данный физический процесс имеет множество аспектов, каждый из которых можно рассматривать по отдельности.

Есть строго определённые уровни безопасных величин радиационного фона для человека. Для каждой территории свойственен свой уровень радиационного фона. Безопасным и приемлемым показателем для человека является излучение, величиной 20 микрорентген в час, что соответствует 0,2 микрозивертам в час. Предельно допустимая доза, то есть, такая, что неспособна нанести вред человеческому организму, - 50 микрорентген в час или 0,5 микрозиверта в час. Любой фон, выше данных значений, является небезопасным, и долго пребывать в подобных участках крайне не рекомендуется.

Считается, что доза облучения, которую человек может вынести без особого вреда здоровью, - 10 микрозивертов. Если ионизирующее воздействие было очень кратковременным, то речь идёт о величине нескольких миллизивертов. Таким воздействием, например, обладает рентген-аппарат.

Важно! Человеческий организм способен накапливать облучение на протяжении всей жизни. Следует помнить, что порог подобного накопления - 700 миллизивертов. Его ни в коем случае нельзя пересекать!

Табличная инфографика, иллюстрирующая количество радиоактивного облучения, с которым человек сталкивается в повседневной жизни и которое может нанести вред здоровью. В таблице единицами измерения радиации являются миллизиверты [мЗв].

Доза облучения Описание
0,01 мЗв Доза облучения во время стоматологического рентгена.
0,4 мЗв Доза, которую получит женщина во время маммографии.
1,02 мЗв Дозировка в час, которая был зафиксирована на атомной электростанции в Фукусиме (Япония) 12 марта 2011 года.
2,4 мЗв Нормальный годовой уровень радиации.
6,9 мЗв Доза облучения во время флюорографии.
10 мЗв Доза облучения во время компьютерной томографии
100 мЗв Больший риск приобретения онкологического заболевания.
350 мЗв Воздействие на жителей Чернобыля, которые были переселены.
400 мЗв Максимально зафиксированный уровень излучения в час на АЭС в Фукусиме 14 марта 2011 года.
700 мЗв Через несколько часов после воздействия начинается неконтролируемая рвота.
1000 мЗв После воздействия подобной дозы шанс выжить составляет 50%.
6000 мЗв Средняя дозировка, которую получили ликвидаторы аварии на Чернобыльской АЭС. Они все умерли в течение месяца после трагедии.
10 000 мЗв Внутреннее кровотечение, смерть в течение двух недель после облучения.
20 000 мЗв Когнитивные нарушения, судороги и смерть в течение нескольких часов после облучения.

Последствия облучения радиоактивными волнами

Поражение людей ионизирующим излучением может проявиться в виде лучевой болезни разной степени тяжести. Лучевая болезнь проявляется при дозе облучения, равной 1 зиверту. Увеличение дозы двукратно значительно увеличивает риск развития онкологического заболевания, а при трёхкратном увеличении велик риск смертельного облучения.

Первые симптомы лучевой болезни:

  • диарея;
  • синдром хронической усталости;
  • тошнота, рвота;
  • надсадный кашель;
  • нарушения со стороны сердечно-сосудистой системы.

Воздействие радиоактивных частиц может вызвать лучевые ожоги. При крупных дозах излучения происходит поражение эпителиоцитов, разрушение костной и мышечной тканей. Помимо ожогов, могут появляться метаболические нарушения, сопутствующие инфекции, лучевая катаракта и бесплодие.

Возможен также стохастический эффект, проявляющийся в появлении раковых опухолей. Чаще всего онкология возникает в молочной железе, щитовидной железе и нижних отделах кишечника.

Приборы для измерения радиации

В бытовых условиях для определения уровня радиации используются карманные дозиметры, которые можно использовать как в бытовых условиях, так и на заражённой территории. С помощью них также можно проводить проверку пищевых продуктов и прочих вещей на предмет заражения радиоактивными частицами. Подобные приборы широко используются туристами и специалистами-экологами.

Также для подсчёта ионизирующих частиц используют счётчик Гейгера, прибор, имеющий характерный стрекочущий звук. Он тоже является тем устройством, чем измеряют радиацию.

Независимо от того, где находится человек, он постоянно получает облучение. Безопасным считается ионизирующее облучение земного и космического происхождения. От естественных источников радиации каждый человек получает облучение примерно в 200 мбэр/год (это естественный радиационный фон). Но за счет научного прогресса, давшего нам прочные строительные материалы, полеты в самолетах, телевизоры и компьютеры, а также ядерных испытаний и техногенных аварий каждый современный житель Земли получает еще дополнительное облучение примерно в 300 мбэр/год. Для того чтобы избежать серьезного облучения, следует знать, как измерять радиацию, и регулярно это делать.

Приборы для измерения радиации

Чтобы измерять радиацию были созданы специальные приборы - дозиметры и радиометры. Разница между ними заключается в том, что дозиметр измеряет мощность излучения от определенного объекта за определенное время, а радиометр измеряет плотность потока излучения. Поэтому, если вы планируете измерять радиацию в каком-либо помещении или на местности, то вам потребуется дозиметр. Для того чтобы измерять радиацию от грибов или ягод, собранных в лесу, требуется радиометр. Сейчас в продаже можно встретить комбинированные приборы, которые могут измерять как мощность потока, так и его плотность.
В продаже можно встретить приборы для измерения радиации:
  • стационарные (вес и габариты которых подразумевают наличие машины для их перевозки);
  • портативные (с высокой степенью точности);
  • встроенные в часы (для тех, кто хочет постоянно измерять радиацию);
  • приставка для смартфона (наиболее высокотехнологичный вариант, позволяющий измерять радиацию и автоматически строить карты радиационного загрязнения).
Поэтому у современного человека есть много способов для того, чтобы измерять радиацию. Приборы для измерения радиации часто используют:
  • в местах рядом с ЧАЭС;
  • для обследования территории, на которой планируется возводить жилое здание;
  • при покупке зданий, домов и квартир;
  • во время походов или путешествий по неизведанным территориям, где могут встречаться заброшенные военные объекты, шахтные отвалы, гранитные карьеры.
Целью измерения радиации является определение соответствия ее показателей определенным нормам. Существуют нормы для таких категорий, как:
  • вода;
  • воздух;
  • продукты питания;
  • строительные материалы;
  • медицинское оборудование;
  • компьютерная техника.



Как измерять радиацию

Бытовыми приборами для измерения радиации пользоваться обычно очень легко. Чтобы проверить при помощи бытового дозиметра радиационный фон своей квартиры, офиса или дачи, следует включить прибор и начать перемещаться по помещению, поднося его максимально близко к стенам и различным объектам (предметы интерьера, батареи центрального отопления, кафельная плитка, мраморные или гранитные столешницы). Нормой считается 10-30 мкР/ч в помещении и 8-12 мкР/ч на открытой местности (при этом для человека безопасной считается радиоактивность до 50 мкР/ч).
Как измерять радиацию правильно при помощи того или иного прибора, описано в инструкции, приложенной к нему производителем.