Индукционное вихревое электрическое поле конспект и презентация. Вихревое электрическое поле

Урок 15. Вихревое электрическое поле. ЭДС-индукции в движущихся проводниках

Цель: выяснить условия возникновения ЭДВ в движущихся проводниках.

Ход урока

I. Организационный момент

II. Повторение

В чем заключается явление электромагнитной индукции?

Какие условия необходимы для существования явления электромагнитной индукции?

Как устанавливается направление индукционного тока правилом Ленца?

По какой формуле определяется ЭДС индукции и какой физический смысл имеет знак «минус» в этой формуле?

III. Изучение нового материала

Возьмем трансформатор. Включив одну из обмоток в сеть переменного тока, получим ток в другой катушке. На свободные заряды действует электрическое поле.

Электроны в неподвижном проводнике приводятся в движение электрическим полем, и электрическое поле непосредственно порождается переменным магнитным полем. Изменяясь во времени, магнитное поле порождает электрическое поле. Поле приводит в движение электроны в проводнике и тем самым обнаруживает себя. Электрическое поле, возникающее при изменении магнитного поля, имеет другую структуру, чем электростатическое. Оно не связано с зарядами, оно нигде не начинается и нигде не заканчивается. Представляет собой замкнутые линии. Его называют вихревым электрическим полем. Но в отличие от стационарного электрического поля, работа вихревого поля по замкнутому пути не равна нулю.

Индукционный ток в массивных проводниках называют токами Фуко.

Применение: плавка металлов в вакууме.

Вредное действие: бесполезная потеря энергии в сердечниках трансформаторов и в генераторах.

ЭДС при движении проводника в магнитном поле

При движении перемычки U на электроны действует сила Лоренца, совершающая работу. Электроны перемещаются от С к Л. Перемычка-источник ЭДС, следовательно,

Формула используется в любом проводнике, движущемся в магнитном поле, если Если между векторами есть угол α, то используется формула:

Так как то

Причина возникновения ЭД C - сила Лоренца. Знак е можно определить по правилу правой руки.

IV. Закрепление изученного материала

Какое поле называется индукционными или вихревым электрическим полем?

Что является источником индукционного электрического поля?

Что такое токи Фуко? Приведите примеры их использования. В каких случаях с ними приходится бороться?

Какими отличительными свойствами обладает индукционное электрическое поле по сравнению с магнитным полем? Стационарным или электростатическим полем?

V. Подведение итогов урока

Домашнее задание

п. 12; 13.

Д. Г. Евстафьев ,
МОУ Притокская СОШ, п. Романовский, Александровский район, Оренбургская обл.

Сравнение электрического и магнитного полей. 11 класс

План-конспект урока повторения и обобщения, 11-й класс

Методические рекомендации . Урок проводится после изучения темы «Магнитное поле». Основной методический приём – выделение общих и отличительных черт электрического и магнитного полей с заполнением таблицы. Предполагается достаточно развитое диалектическое мышление, в противном случае придётся делать отступления философского характера. Сравнение электрического и магнитного полей подводит учащихся к выводу об их взаимосвязи, на чём основана следующая тема – «Электромагнитная индукция».

Физика и философия рассматривают материю как основу всего сущего, которая существует в разных формах. Она может быть сосредоточена в пределах ограниченной области пространства (локализована), но может быть, напротив, делокализована. Первому состоянию можно поставить в соответствие понятие вещество , второму – понятие поле . Наряду со специфическими физическими характеристиками эти состояния имеют и общие. Например, есть энергия единицы объёма вещества и есть энергия единицы объёма поля. Свойства материи неисчерпаемы, процесс по­знания бесконечен. Поэтому все физические понятия надо рассматривать в развитии. Так, например, современная физика в отличие от классической не проводит строгой границы между полем и веществом. В современной физике поле и вещество взаимно превращаются: вещество переходит в поле, а поле переходит в вещество. Но не будем забегать вперёд, а вспомним классификацию форм материи. Обратимся к схеме на доске.

Попробуйте по схеме составить краткий рассказ о формах существования материи. (После ответов учащихся учитель напоминает, что след ствием этого является сходство характеристик гравита ционного и электрического полей, которое было выяв ле но на предыдущих уроках по теме «Электрическое поле» .) Напрашивается вывод: если есть сходство между гравитационным и электрическим полями, то должно быть оно и между полями электрическим и магнитным. Давайте сопоставим свойства и характеристики полей в виде таблицы, аналогичной той, которую мы делали при сравнении гравитационного и электрического полей.

Электрическое поле

Магнитное поле

Источники поля

Электрически заряженные тела Движущиеся электрически заряженные тела (электрические токи)

Индикаторы поля

Мелкие листочки бумаги.
Электрическая гильза.
Электрический «султан»
Металлические опилки.
Замкнутый контур с током.
Магнитная стрелка

Опытные факты

Опыты Кулона по взаимодействию электрически заряженных тел

Опыты Ампера по взаимодействию проводников с током

Графическая характеристика

Линии напряжённости электрического поля в случае неподвижных зарядов имеют начало и конец (потенциальное поле); могут быть визуализированы (кристаллы хинина в масле) Линии индукции магнитного поля всегда замкнуты (вихревое поле); могут быть визуализированы (металлические опилки)

Силовая характеристика

Вектор напряжённости электрического поля E .

Величина:

Направление:

Вектор индукции магнитного поля В .
Величина: .

Направление определяется правилом левой руки

Энергетическая характеристика

Работа электрического поля неподвижных зарядов (кулоновcкой силы) равна нулю при обходе замкнутой траектории

Работа магнитного поля (силы Лоренца) всегда равна нулю

Действие поля на заряженную частицу


Сила всегда отлична от нуля:
F = qE
Сила зависит от скорости движения частицы: не действует, если частица покоится, а также если
Вещество и поле
.

Заключение

1. При обсуждении источников поля для повышения интереса к предмету хорошо сравнить два природных камня: янтарь и магнит.

Янтарь – тёплый камень удивительной красоты – обладает необычным, располагающим к философическим построениям свойством: он может притягивать! Будучи натёртым, он притягивает пылинки, нити, кусочки бумаги (папируса). Именно по этому свойству ему и давали названия в древности. Так, греки называли его электроном притягивающим ; римляне – харпаксом грабителем , а персы – кавубой , т.е. способным притягивать мякину . Его считали магическим, лекарственным, косметическим...

Таким же таинственным и полезным считали известный тысячи лет другой камень – магнит. В разных странах магнит называли по-разному, но бо1 льшая часть этих названий переводится как любящий . Так поэтично древние отметили свойство кусков магнита притягивать железо.

С моей точки зрения, эти два особенных камня можно рассматривать как первые изученные природные источники электрического и магнитного полей.

2. При обсуждении индикаторов полей полезно одновременно продемонстрировать с помощью учащихся взаимодействие наэлектризованной эбонитовой палочки с электрической гильзой и постоянного магнита с замкнутым контуром с током.

3. Визуализацию силовых линий лучше продемонстрировать, используя проекцию на экран.

4. Деление диэлектриков на электреты и сегнетоэлектрики – дополнительный материал. Электреты – это диэлектрики, длительно сохраняющие поляризацию в отсутствие внешнего электрического поля и создающие собственное электрическое поле. В этом смысле электреты подобны постоянным магнитам, создающим магнитное поле. А ведь это ещё одно сходство с жёсткими ферромагнетиками!

Сегнетоэлектрики – кристаллы, обладающие (в некотором температурном интервале) спонтанной поляризацией. При уменьшении напряжённости внешнего поля индуцированная поляризация частично сохраняется. Для них характерно наличие предельной температуры – точки Кюри, при которой сегнето­электрик становится обычным диэлектриком. Опять сходство с ферромагнетиками!

После работы с таблицей коллективно обсуждаются обнаруженные сходства и различия. Сходство лежит в основе единой картины мира, различия объясняются пока на уровне разной организации материи, лучше сказать – степени организации материи. Одно то, что магнитное поле обнаруживается только около движущихся электрических зарядов (в отличие от электрического), позволяет предсказать более сложные методы описания поля, более сложный математический аппарат, применяемый для характеристик поля.

Дмитрий Георгиевич Евстафьев – потомственный учитель физики (отец, Георгий Севостьянович, участник Великой Отечественной войны, много лет проработал в Добринской СОШ, совмещая преподавание с обязанностями директора школы), окончил в 1978 г. физмат Оренбургского ГПИ им. В.П.Чкалова по специальности «Физика», педагогический стаж 41 год. С 1965 г. работает в МОУ Притокская СОШ, несколько лет был её директором. Был трижды награждён почётными грамотами Оренбургского облоно . Педагогическое кредо: «Не довольствоваться достигнутым!» Многие его выпускники окончили технические вузы. Вместе с женой воспитали пятерых детей, трое работают в школах Оренбуржья, двое учатся на историческом и филологическом факультетах Оренбургского ГПУ. Сын Сергей – победитель Всероссийского конкурса «Лучшие учителя России» 2006 г., учитель информатики, работает в райцентре – посёлке Новосергиевка. Хобби – пчеловодство.

Тема. Закон электромагнитной индукции

Цель урока: ознакомить учащихся с законом электромагнитной индукции.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Контроль знаний

1. Поток магнитной индукции.

2. Явление электромагнитной индукции.

3. Правило Ленца.

Демонстрации

1. Зависимость ЭДС индукции от скорости изменения магнитного потока.

2. Фрагменты видеофильма «Явление электромагнитной индукции».

Изучение нового материала

1. Закон электромагнитной индукции.

2. Вихревое электрическое поле.

3. ЭДС индукции в движущихся проводниках.

Закрепление изученного материала

1. Качественные вопросы.

2. Учимся решать задачи.

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Откуда же берутся посторонние силы, которые действуют на заряды в контуре? В случае неподвижного относительно наблюдателя проводника причина появления посторонних сил - переменное магнитное поле. Дело в том, что переменное магнитное поле порождает в окружающем пространстве электрическое поле - именно оно действует на свободные заряженные частицы в проводнике. Но порождение электрического поля магнитным полем происходит даже там, где нет ведущего контура и не возникает электрический ток. Как видим, магнитное поле может не только передавать магнитные взаимодействия, но и быть причиной появления другой формы материи - электрического поля.

Однако электрическое поле, порождаемое переменным магнитным полем, имеет существенное отличие от поля, созданного заряженными частицами.

Электрическое поле, создаваемое переменным магнитным полем, является вихревым, то есть его силовые линии являются замкнутыми.

Вихревое электрическое поле имеет некоторые особенности:

1) поле проявляет себя через силовое воздействие на заряженные частицы, поэтому основной характеристикой вихревого электрического поля является напряженность ;

2) в отличие от электростатического поля, линии напряженности вихревого электрического поля являются замкнутыми. Направление этих линий можно определить с помощью, например, левой руки, как показано на рисунке:

3) в отличие от электростатического поля, работа вихревого электрического поля по замкнутой траектории не равна нулю (вихревое электрическое поле является непотенціальним).

Рассмотрим проводник длиной l , движущегося поступательно в однородном магнитном поле с индукцией со скоростью , напрямленою под углом к линиям магнитной индукции поля.

На электроны, движущиеся вместе с проводником в магнитном поле, действует сила Лоренца, направленная вдоль проводника. Ее модуль

где q 0 - заряд свободной заряженной частицы. Под действием этой силы происходит разделение зарядов - свободные заряженные частицы сместятся к одному концу проводника, а на другом конце возникнет их нехватка, то есть будет превышать заряд противоположного знака. Следовательно, в этом случае сторонняя сила - это сила Лоренца. Разделение зарядов приведет к появлению электрического поля, что будет препятствовать дальнейшему разделению зарядов. Этот процесс прекратится, когда сила Лоренца и сила = q 0 уравновесят друг друга. Следовательно, внутри проводника напряженность электрического поля E = B sin , а разность потенциалов на концах проводника U = El = B lsin . Поскольку мы рассматриваем разомкнутое круг, разность потенциалов на концах проводника равна ЭДС индукции в этом проводнике. Таким образом,

Если такой проводник замкнуть, то по кругу пройдет электрический ток. Таким образом, движущийся в магнитном поле проводник можно рассматривать как своеобразный источник тока характеризуется ЭДС индукции.

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. Почему в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индукционный ток?

2. Какова причина возникновения индукционного тока при движении проводника в постоянном магнитном поле?

3. Какие особенности вихревого электрического поля?

Второй уровень

1. Какова природа сторонних сил, которые обусловливают появление индукционного тока в неподвижном проводнике?

2. Почему закон электромагнитной индукции формулируют для ЭДС, а не для силы тока?

3. Какова природа ЭДС индукции в проводнике, движущемся в магнитном поле?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

) . Качественные вопросы

1. Почему от удара молнии иногда перегорают предохранители даже выключенного из розетки прибора?

2. Почему для обнаружения индукционного тока замкнутый проводник лучше брать в виде катушки, а не в виде прямолинейного провода?

) . Учимся решать задачи

1. С помощью гибких проводов прямолинейный проводник длиной 60 см присоединен к источнику постоянного тока с ЭДС 12 В и внутренним сопротивлением 0,5 Ом. Проводник движется в однородном магнитном поле индукцией 1,6 Тл со скоростью 12,5 м/с перпендикулярно к линиям магнитной индукции. Определите силу тока в проводнике, если сопротивление внешней цепи равно 2,5 Ом.

Переменное магнитное поле порождает инду­цированное электрическое поле . Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя , подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле , подобно магнитному, является вихревым.

Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов - бетатронов.

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле
(вихревое электр. поле)

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ Причина возникновения электрического тока в неподвижном проводнике - электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.


Вихревое поле. Индукционное электрическое поле является вихревым. Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока. Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.


Электрическое поле - вихревое поле. электростатическое поле 1. создается неподвижными электрическими зарядами 2. силовые линии поля разомкнуты - - потенциальное поле 3. источниками поля являются электрические заряды 4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. индукционное электрическое поле (вихревое электрическое поле) 1. вызывается изменениями магнитного поля 2. силовые линии замкнуты - - вихревое поле 3. источники поля указать нельзя 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции